Combining genetics and demographics in a viability model of
hatchery-wild systems subject to environmental change
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Objective and Methods

Objective
Explore effects of pHOS, pNOB, and wild broodstock
take (“mining”) on population persistence.

Methods

I. Analytical model (genetic)
e Relative fitness is response
e Explore sensitivity to selection parameters

Il. Individual-based model (genetic & demographic)
e  Population viability is response
e Environmental change
 Explore effect of “mining” wild fish



l. Analytical Model- Quantitative Genetics

Selection in Captivity during Supportive Breeding May
Reduce Fitness in the Wild

MICHAEL J. FORD
Mational Marine Fisheries Service, Morthwest Fisheries Science Center, Conservation Biology Division, 2725
Montlake Boulevard E | Seattle, WA 28112, U5 A email mike ford@noaa gov

Abstract: [ used a guaniitative genetic model io explore the effects of selection on the fitness of a wild pofu-
latfon sulrject to supportive brevding. Supportive breeding is the boosting of a wild poprrdation’s size by breed-
ing part of the popudation in capeivity and releasing the captive progemy back into the wild. The model as-

White Paper No. 1

Predicted Fitness Effects of Interbreeding

between Hatchery and Natural Populations of
Pacific Salmon and Steelhead

1 Introduction

The propagation of Pacific salmon and steelhead ( Oncorfinchs spp.:) in hatcheries has
raised concerns for more than 30 years regarding the long-term genetic effects of
hatcherv-origin fish on the mean fitness of natural populations (Reizenbichler and
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Selection on a Quantitative Character
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Selection on a Quantitative Character
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Selection on a Quantitative Character
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Selection on a Quantitative Character
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Il. Individual-based Model of Niche Evolution
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The phenomenology of niche evolution via
quantitative traits in a ‘black-hole’ sink

R. D. Holt"", R. Gomulkiewicz® and M. Barfield'
'111 Bartram Hall, Department of Zoology, Umversity of Flomda, PO Box 118525, Gamesoille, FL 32611-8525,
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Previous studies of adaptoee evolution in sink habitats (in which isolated populations of a species cannot
persist deterministically) have highhighted the importance of demographic constraints in slowmg such
evolution, and of immigration in facilitating adaptatton. These studies have relied upon either single-locus
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Temporal Variation Can Facilitate Niche Evolution

in Harsh Sink Environments
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Il. Individual-based Model of Niche Evolution

Parent Oﬂ
Locusl 0.159 -0.338
Locus2 0.082 0.082

Parent 2
Locusl 0.066 0.272
Locus2 0.136 -0.001

Locu:slo 0.624 —0.571 Locusl0 -0.271  -0.125

Offspring
Locusl 0.272 -0.338
Locus2 0.136 0.082

Locus10 -0.271 -0.271

Individual’s phenotype is sum of allelic values + Normal(0,1)



Il. Individual-based Model of Niche Evolution

Model attributes

e Allows selection-mutation-drift balance

* Relaxes assumption of constant heritability (h* =

Va
Va+VE
e Relaxes assumption of constant phenotypic variance
 Demographic stochasticity

)



Reproducible Result

218 R. D. Holt and others Punctuated niche evolution Proceeding of the Roya| Society B

2007 (q) 1(b)

1501

100 1 ]

sink population

501 7

0 200 400 600 800 1000 200 400 600 800 1000

generation generation

Figure 2. Characteristic examples of population dvnamics for species adapting to sink habitats. For the five examples shown
on each panel, K =64, 2B=8, n;,=0.01, n=10, @ =0.05,I=4, »* =1, feowrce =0, and funr = 2.8. The population sizes
shown are numbers of adults, after selection and before immigration. (a) With sink mutation; (f) same as (a) except with no
sink mutation.
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Simulation Result
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Simulation Result
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Simulation Result
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Simulation Results
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Concluding Remarks

e pHOS and pNOB are measurable and partially controllable
 Analytical and individual-based models can paint different pictures

e Some optimal combination of pHOS, pNOB and “mining rule” must
exist in theory

e Individual-based model offers useful realism, but parameterization
still problematic

e Value of empirical research on model assumptions?
i)  How different are fitness functions in hatchery and wild?
ii) Recent finding of rapid adaptation
iii) Basket and Waples (2012): timing of selection vs. density dependence
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