

NOAAFISHERIES

Northwest Fisheries Science Center

Intraspecific competition between hatchery & wild anadromous salmonids: rethinking hatchery practices to reduce negative ecological interactions

Christopher Tatara and Barry Berejikian

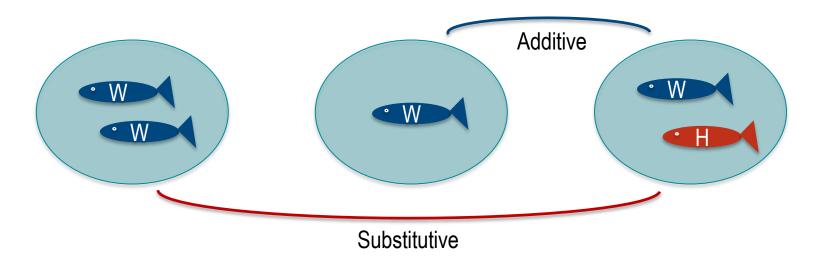
Hatchery vs. Wild Salmonid Symposium: Research, Management, and Reform in the Pacific Northwest. January 22-23, 2015 Portland, Oregon

Collaborators: WNFH steelhead study

- Chris Pasley & staff of the USFWS WNFH
- Bill Gale, Matt Cooper, Ben Kennedy, & staff of USFWS MCFRO
- Penny Swanson, Don Larsen & Jeff Atkins: NWFSC
- Jon Dickey & Mollie Middleton: UW
- Funding BPA: Project 1993-056-00

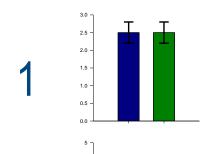
Overview

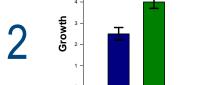
- Intraspecific competition
 - Experimental designs to measure competition
 - Relative competitive ability of hatchery salmonids
 - Meta-analysis of published competition studies
- How knowledge of H x W ecological interactions can inform hatchery management
 - Steelhead program at Winthrop National Fish Hatchery


What is intraspecific competition?

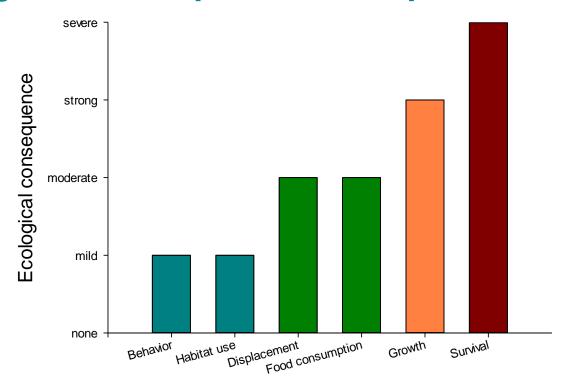
- Intraspecific competition occurs when members of the same species attempt to access a common limiting resource.
 - Habitat and/or territories
 - Food
 - Access to mates or spawning sites

• Often stronger than interspecific competition due to 100% overlap of ecological niche for individuals of the same species.


Experimental designs to measure competition


- Additive: Density different among treatments measures <u>effect</u> of competition
- Substitutive: Density constant among treatments measures <u>relative competitive ability</u>

Interpretation of substitutive design results



Relative competitive ability

Ecological consequences & experimental endpoints

Experimental competition endpoint

Calculation of relative competitive ability (RCA)

- Two equations used depending on data reporting
- When endpoints separately reported for hatchery and wild fish:
 - 1. RCA = mean Hatchery / mean Wild
- When endpoints only reported for wild fish:
 - 2. RCA = mean Wild_{wild} / mean Wild_{hatchery}

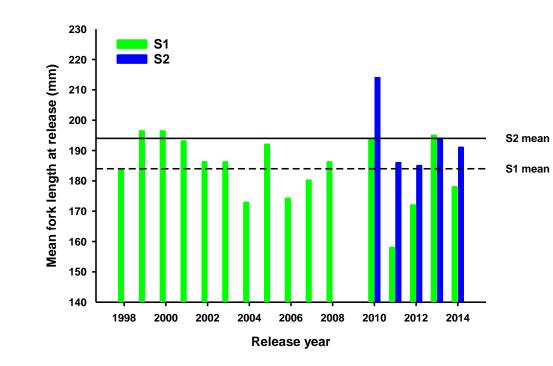
Relative competitive ability of hatchery and wild fish

Conclusions: Relative competitive ability

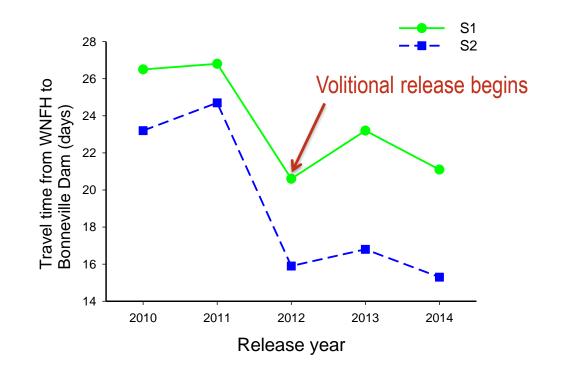
- Available data for anadromous salmonids indicates that hatchery and wild fish are not very different in their competitive ability.
- This does not mean that hatchery fish do not compete with wild fish.
- Informed hatchery management can reduce ecological interactions

Winthrop National Fish Hatchery

- Location: Winthrop, WA on Methow River
 - 54 miles from Columbia confluence
- Dual purpose steelhead program
 - Mitigation & Recovery of Upper Columbia steelhead (threatened)
- Transition to Methow River broodstock
 - Two year smolt rearing program (S2)
 - Maintained yearling program (S1) until 2015 release year

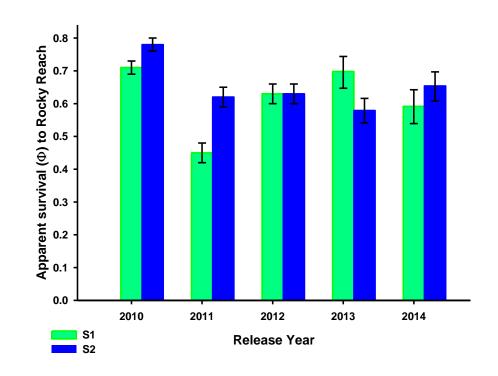

Hatchery management to reduce H x W interactions

- S2 program uses local wild broodstock to reduce genetic effects from hatchery introgression
- S2 rearing cycle closer to natural age of smoltification
- S2 growth is regulated to minimize the incidence and release of parr and precociously mature males

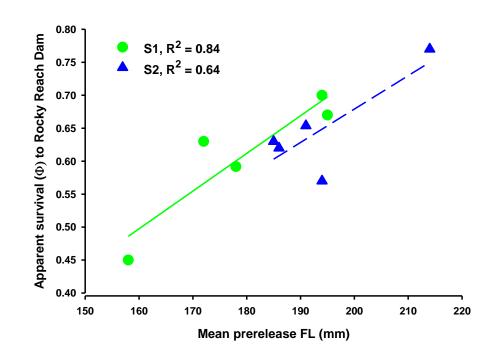

Advantages of S2 rearing are related to size at release

- Greater variation in size at release for S1 than S2
- S1 smaller than S2
- Size at release affects
 - Survival
 - Travel time
 - Residualism

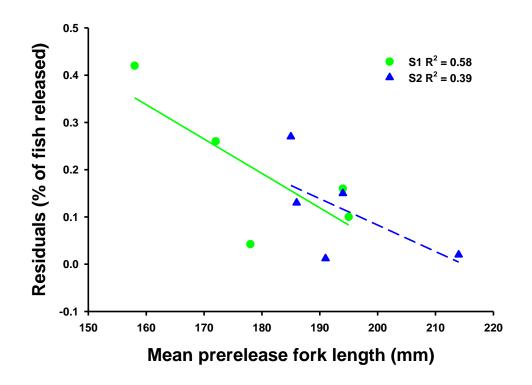
Travel time of S1 and S2 smolts to Bonneville Dam


- S2 migrate faster than S1 all years
- S2 spend less time in the Methow and Columbia Rivers
- Decreased potential for interaction

Apparent survival of S1 & S2 to Rocky Reach Dam


- Apparent survival of S2 ≥ S1 in 4 of 5 years
- S2 program could release fewer fish than S1 and possibly expect fewer residuals
- Decreased interaction

Body size effects on apparent survival


- Positive correlation between mean body size and apparent survival to Rocky Reach
- S2 fish are larger than S1 fish in most years
- S2 program decreases interaction through increased survival
- Corresponding apparent mortality combines actual mortality & residualism

Residualism

- The incidence of residualism decreased as mean body size increased for S1 & S2
- S2 steelhead are larger than S1 steelhead in most years
- Expect lower incidence of residualism in S2 steelhead and reduced hatchery by wild ecological interactions

Conclusions: informed hatchery management

- Our knowledge of competition between hatchery and wild salmonids can inform changes to hatchery programs that reduce the likelihood of ecological interactions.
- Use of a local broodstock & a 2-year rearing cycle reduced outmigration travel time, increased survival, and reduced residualism relative to a 1-year rearing cycle for steelhead.
- Implementation of 2-year smolt rearing reduced the potential for ecological interactions, the reduction was associated with increased body size at release and lower annual variation in body size of S2 steelhead.