### The use of hatchery fish to rebuild populations of Snake River Sockeye Salmon in Idaho

### Christine Kozfkay

Principal Fisheries Research Biologist, IDFG

Co-authors: Mike Peterson, IDFG Dan Baker, IDFG



### Implementation

 Cooperative effort o IDFG **o** NOAA **o** ODFW o SBT o BPA





# Sockeye Salmon Historical Abundance

- In the 1890's, 150,000 fish returning (Evermann 1896)
- Numbers declined through the early and mid 1900's
- Between 1985 1989, 62 adults returned cumulatively
- In 1990, no adults returned



## ESA listing decision

- In 1990, the Shoshone-Bannock Tribe of Idaho petitioned NMFS to list
- Spring, Summer 1991: IDFG collected Redfish Lake smolts and anadromous adults that returned to initiate the captive broodstock
- November 1991: ESU was listed as endangered

### Captive Broodstock Development

Broodstock Collection (1991 – 1998)

- 16 wild sockeye (all that returned in '90s)
- several hundred out-migrating sockeye smolts (1991 1993)
- 26 "residual" sockeye salmon (1993 1995)

# **Broodstock & Production**



Adults are spawned at the IDFG and NOAA



Captive Broodstock: 800 -1500 eyed eggs from IDFG representing each subfamily are kept at IDFG and NOAA and reared to maturity.

Some may be released as adults



IDFG Eagle Fish Hatchery

eyed eggs from IDFG and NOAA are sent to OFH, SFH, or SPFH and are reared to release. Another group of eyed eggs may be outplanted.

Smolts migrate to the ocean

Adults return

from the

ocean

## Initial Objectives of the Program

• Utilize Captive Broodstock Technology to avoid extinction and "gene banking"

- × Successfully culture Sockeye Salmon
- × Conserve genetic diversity
- × Increase the numbers of individuals

# Objectives of this study

- Evaluate different release strategies
- Use Parentage Based Tagging to determine age and origin of Sockeye Salmon
  - × Compositon in anadromous return
  - × Productivity metrics (R/S, SARS) from hatchery and natural releases
- Describe the future direction of the program

# "Spread the Risk" Release strategies

### **Redfish Lake**

#### Adult releases

#### Redfish Lake Creek - Smolts Salmon River - Smolts

# Pettit Lake Presmolts Eyed eggs

### **Alturas Lake**

Presmolts

Eyed eggs



# Marking of release strategies

Separate marks identified release strategies with the exception of offspring from egg-boxes, adult outplants, and un-sampled natural spawners

BUT:

The HSRG "recommends that managers tag/mark all fish released by this program".... But "finding alternative means of identifying fish and discontinuing the practice of ventral fin clipping" (HSRG 2009)

AND:

CWT can shed

Genetic Marking – No needs for marks



# Advantages of genetic marking (PBT)

- Higher tagging rates than CWT (Steele et al. 2014)
- Less invasive (only need a clip or scales)
- Can be applied at any life stage
- Can address other questions such as heritability, family correlated survival, lifetime reproductive success

\*Caveat – different families need to be kept separate for evaluations (cannot split eggs into different groups) or marks are still needed.

### In 2006, PBT was initiated

Starting in 2006 (BY03), every adult that spawned, released or an ocean return was genotyped for pedigree analysis for the captive broodstock



So, jacks in 2009 and all adults returning in 2010 could be assigned an age and origin (release strategy)

# **PBT Methods**

Genotyped spawned and/or released adults w/ 9 – 16 microsatellite loci

Parentage analysis (Cervus 2.1)

Expand assignments based upon tagging rates or use age length key (R - code, Ogle et al. 2013)

First Generation Returning Fish:

Calculate R/F Calculate SARs

# Adult Offspring Sampled

![](_page_15_Figure_1.jpeg)

4,449 adults returned

### Adult Spawners and Releases (PBT)

| Year  | Spawners | Released |
|-------|----------|----------|
| 2006  | 657      | 465      |
| 2007  | 574      | 497      |
| 2008  | 603      | 966      |
| 2009  | 593      | 1330     |
| 2010  | 546      | 1577     |
| TOTAL | 2973     | 4835     |

## **Tagging rates**

• Tagging Rates were calculated by release strategy and cross information and were greater than 95% except one instance (2008 Release).

### Assignment Results

(expanded by tagging rate)

| Anadromous<br>Return year | Hatchery<br>Origin<br>Assignments | Natural Origin<br>Assignments | Overall<br>Assignment<br>Rate |
|---------------------------|-----------------------------------|-------------------------------|-------------------------------|
| 2010                      | 99%                               | 86%                           | 97%                           |
| 2011                      | 96%                               | 67%                           | 92%                           |
| 2012                      | 99%                               | 67%                           | 92%                           |
| 2013                      | 97%                               | 32%                           | 79%                           |
| 2014                      | 96%                               | 82%                           | 92%                           |

R code was used to assign an age based on length data for un-assigned fish

### Natural Returns

(not assigned after expansions)

![](_page_19_Figure_2.jpeg)

# Anadromous Sockeye Salmon Returns By Release Strategy

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

.

## SAR for Redfish Lake

|                                                  | BROODYEAR      |               |               |               |               |              |
|--------------------------------------------------|----------------|---------------|---------------|---------------|---------------|--------------|
| Estimated Emigration By Strategy                 | 1996           | 2004          | 2005          | 2006          | 2007          | 2008         |
| Estimated RFL emigration from pre-smolt releases | 152,322/28,435 | 39,870/16,612 | 61,804/15,164 | 62,015/16,857 | 57,093/13,544 | 34,561/5,704 |
| Estimated RFL emigration from smolt releases     | 81,615         | 86,052        | 101,676       | 150,395       | 173,055       | 179,278      |
| Estimated RFL emigration from natural production | 2,799          | 5,609         | 6,088         | 6,338         | 4,822         | 12,558       |

|                                                        | BROODYEAR |      |      |       |      |      |
|--------------------------------------------------------|-----------|------|------|-------|------|------|
| Estimated Returns By Strategy                          | 1996      | 2004 | 2005 | 2006  | 2007 | 2008 |
| Estimated adult returns to RFL from pre-smolt releases | 42        | 5    | 24   | 57    | 36   | 13   |
| Estimated adult returns to RFL from smolt releases     | 186       | 289  | 746  | 1,101 | 853  | 220  |
| Estimated adult returns to RFL from natural production | 10        | 48   | 87   | 202   | 34   | 43   |

407,665 Pre-smolts planted177 adults back0.04% SAR772,071 Smolts planted3,395 adults back0.44% SAR32,214 Natural smolts produced in lake424 adults back1.32% SAR

# SARs per release strategy

![](_page_23_Figure_1.jpeg)

# Next phase of the program

Program has successfully met its initial objectives:

- × Staving off extinction
- × Maintaining population diversity (Kalinowski et al. 2012, 95%)
- Increasing the size of the program in captivity
- Learned about success of release strategies and that captive fish can reproduce in the wild

### Ready to move into the next phase:

Phase 2: Re-Colonization

### Phase 2 Strategy

• Utilize the two release strategies that provide the greatest demographic boost and increase population fitness

![](_page_25_Figure_2.jpeg)

### Phase 2

Initiate with development of expanded smolt program at Springfield Hatchery (first release in 2015)

Springfield Hatchery – rear 1 million full-term smolts (~3X the current numbers, 2017)

# Phase 2 Goals/Triggers

- Generate anadromous adult returns sufficient to meet broodstock and escapement objectives
- Increase population fitness
- Establish a self-sustaining anadromous broodstock and reduce reliance on captive broodstock
  - Trigger 1: When 5-yr avg return > 1,000, begin to phase out NOAA
  - Trigger 2: When 5-yr avg return > 2,150, Eagle Hatchery terminated
  - Trigger 3: When 5-yr avg return of natural adults > 750, Reduce size of hatchery program and intiate integrated broodstock

![](_page_28_Figure_0.jpeg)

May already be seeing benefits with record natural return in 2014 (BY2010)

## Summary

- The program has been successful in achieving early goals of the program
  - Prevented extinction
  - Maintained genetic diversity
- A phased approach to recovery is in place and the recovery plan has been completed.
- Still challenges and uncertainties
- Expect to continue to see record returns.

## Acknowledgements

**Eagle Fish Hatchery Staff:** Travis Brown, Ken Felty NMFS Fish Hatchery Staff: Tom Flagg, Deb Frost, Carlin McCauley, Des Maynard, Fisheries Research Technicians: Kurtis Plaster Genetics Lab Technicians: Amanda Boone, Lizzie Parkinson, Grant Bruner, Bryan Ayers **Database Coordinatior:** Jesse McCane Sawtooth Fish Hatchery Staff **Springfield Fish Hatchery Staff Oxbow Fish Hatchery Staff SBT Tribe Biologists IDFG HQ Staff**: Dan Schill, Paul Kline, Jeff Heindel **BPA Staff:** Jonathan McCloud

Many others...20 years of staff

![](_page_31_Picture_0.jpeg)