CHaMP

STATUS OF GEOMORPHIC CHANGE DETECTION OF 2011 TO 2012 SURVEYS

Joe Wheaton Wally Macfarlane Phillip Bailey

CHaMP Post-Season Workshop November 27, 2012

ACKNOWLEDGEMENTS

- All the CHaMP Crews
- Boyd Bouwes
- Andy Hill & Entire ELR Team
- Kelly Whitehead & Carol Volk
- Steve Rentmeister & SITKA
- ET-AL

2011-2012 ANNUAL SITES w/ GCD

0 60 120 180 240 300 Kilometers

0 100 200 300 400 500 Kilometers

WHAT IS DEM-BASED GCD?

A little background... N

- DEM -> digital elevation model
- GCD -> geomorphic change detection
- Of everything that CHaMP measures, GCD is one of most sensitive to the quality of the data and influences like crew variability.

CHANGE VS. BEHAVIOR

The behavior and river change. River *behavior* reflects adjustments that occur within the nature statement of a river such as those depicted for the braided river in sections A and B and for the sections C and D. River *change* reflects a wholesale shift in river type as depicted by a braided to a meandering river.

SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL

67

River Futures

An Integrative Scientific Approach to River Repair

Edited by Gary J. Brierley and Kirstie A. Fryirs

WAYS A RIVER CAN ADJUST LOCALLY

- Adjustments (Erosion/Deposition)
 - Channel morphology
 - Channel Size
 - Channel Shape
 - Bed Character
 - Planform
 - Arrangement of geomorphic units
 - An adjustment is not a *change* in river type!
 - "River *behavior* equates to adjustments around a characteristic assemblage of geomorphic units"

JtahStateUniversitv

FORMS OF ADJUSTMENT TO CHANNEL SHAPE

- Geomorphologists
 have lots of special
 names for things...
- Basically, all expressions or special cases of erosion or deposition

NATURAL CAPACITY FOR ADJUSTMENT

 Plausible limits on what adjustments are possible

CHANGE DETECTION WITH DEM DIFFERENCING

IN A PERFECT WORLD...

• The signal (the change we're trying to detect) is much greater than our noise....

- In many instances, the noise is of similar magnitude to our noise... $\frac{\partial z}{\partial t} \approx \delta(z)$ Surf • L
- Better in places where Total vertical changes are large! (3 to 3)

- LiDaR : +/- 10 to 25 cm (14 to 36 cm _{min}LoD)
- Total Station: +/- 2 to 10 cm (3 to 14 cm minLoD)

SMALL PROBLEM...

- Distinguish those changes that are real from noise
- Use standard Error
 Propagation
- Errors assumed to be spatially uniform, but can vary temporally

$$\delta(z) = \sqrt{\left(\delta(z)_{DEM_{old}}\right)^2 + \left(\delta(z)_{DEM_{new}}\right)^2}$$

e.g.
$$\delta(z) = \sqrt{(10)^2 + (20)^2} = 22.36$$

22.36 cm ≈ 8.8 in

See •Brasington et al (2000): *ESPL* •Lane et al (2003): *ESPL* •Brasington et al (2003): *Geomorphology*

GCD NOW IN RBT-CHAMP

- GCD 5 makes it easy to:
 - Robustly estimate errors in DEMs
 - Determine significance of uncertainty on DoD & Sediment Budget
 - Calculate change in storage sediment budgets (with +/- vol.)
 - Quantitatively interpret and spatially segregate budget

📚 Project

_ 0 53

Calculate

71 18%

24 32%

24 27%

24 41%

0%

100%

50%

Close

Percentage

0%

0% 0

Value

A TYPICAL 2012 STORY....

• Lake Creek: South Fork Salmon Watershed, ID

50

100 Meters

UTTERLY PLAUSIBLE... TOO CONSERVATIVE

• Chiwawa River: Wenatchee Watershed, WA

THRESHOLDING...

• NOISE?

WHY? WHAT'S GOING ON?

 $\delta(z) = \sqrt{\left(\delta(z)_{DEM_{old}}\right)^2 + \left(\delta(z)_{DEM_{new}}\right)^2}$

A REALLY ACTIVE SITE...

• Tucannon River, Tucannon River Watershed, WA

OBVIOUS DATUM PROBLEMS...

SOMETHING FISHY... BEAR VALLEY CREEK

SEDIMENT BUDGET

- Components:
- Areal/Volumetric
- Raw/Thresholded
- +/- Estimates
- Percentages
- ECDs
- Change in Storage

Morphological Sediment Budget:

$$Q_{b_{IN}} - Q_{b_{OUT}} = \frac{\Delta V_{DoD}}{\Delta t}$$
Bedload Flux Difference Change in
Storage

$$\Delta V_{DoD} = \Sigma V_{Deposition} - \Sigma V_{Erosion}$$

Attribute	Raw	Thresholded DoD Estimate:					
AREAL:							
Total Area of Erosion (ft ²)	30,009	3,895					
Total Area of Deposition (ft ²)	46,330	6,425					
VOLUMETRIC:			± Error Volume	% Error			
Total Volume of Erosion (ft ³)	25,108	7,629	± 1,164	15			
Total Volume of Deposition (ft ³)	48,855	11,462	± 2,323	20			
Total Volume of Difference (ft ³)	73,963	19,091	± 3,488	18			
Total Net Volume Difference (ft ³)	23,747	3,834	± 2,599	68			
PERCENTAGES (BY VOLUME)							
Percent Erosion	34%	40%					
Percent Deposition	66%	60%					
Percent Imbalance (departure from equilibrium)	16%	10%					

A SUMMARY.XML FILE...

Attribute	Raw	Thresholded DoD Estimate:						
AREAL:								
Total Area of Erosion (ft ²)	30,009	3,895			12		 	· · · ·
Total Area of Deposition (ft ²)	46,330	6,425						
VOLUMETRIC:			± Error Volume	% Error	10 -			
Total Volume of Erosion (ft ³)	25,108	7,629 :	± 1,164	15%	m 8 -			
Total Volume of Deposition (ft ³)	48,855	11,462 :	± 2,323	20%	6 10			
Total Volume of Difference (ft ³)	73,963	19,091 :	± 3,488	18%	ű ő			
Total Net Volume Difference (ft ³)	23,747	3,834 :	± 2,599	68%	Nol			
PERCENTAGES (BY VOLUME)					4 -			
Percent Erosion	34%	40%			2			
Percent Deposition	66%	60%						
Percent Imbalance (departure from equilibrium)	16%	10%			0 -5	0 -40	 -20	-10

• What's here? Where did it come from?

10

20

SOON.... NOT YET

0 60 120 180 240 300 Kilometers

0 100 200 300 400 500 Kilometers

MAIN TAKE HOMES

- GCD Results Now Automated
- We're seeing that one-size fits all error model is too conservative
- We might want to show crews their error models
- Still QA/QC... Roughly 12 of 120 need further attention
- Some refinements required, but first cut is promising
- Too soon to inter-compare basins, but soon

