Lemhi River Effectiveness Monitoring (ISEMP/CHaMP)

Using Fish and Habitat data in the ISEMP Watershed Model to evaluate the Lemhi Conservation Plan

Funding: BPA/PCSRF/NOAA

Goal = relate watershed restoration efforts to fish **population** changes (response measure for "Bi-op")

- We need to measure the <u>success</u> of our Restoration Actions at a population scale
- Use the monitoring data to <u>plan</u> future restoration actions (i.e. adaptive management)
- Have a tool that translates <u>habitat into fish</u>
 Identify what is limiting fish population growth
- BUT, very difficult to disentangle ocean and mainstem migration conditions from freshwater habitat conditions
 - "Black box" problem; highly complex

Lemhi River Effectiveness Monitoring

- Measure that part of the anadromous life-cycle which is directly influenced by tributary habitat
 - <u>Productivity</u> = migrants/spawner
 - Abundance = population growth
- Freshwater productivity as a function of habitat quantity/quality – in life-cycle context.
 - identify upper limit for improvement in FW productivity
 - identify life-stage(s) with greatest/least potential for change (and interaction)

Today = merging CHaMP and ISEMP Data to evaluate a fish population

Lemhi Watershed (Brief Background)

- Successful & active watershed council
 - significant private cooperation
 - federal/state/local agency cooperation
- A single population of Steelhead
- A single population of spring Chinook Salmon
 - Historically, one the largest Snake River spawning populations
- Extensive Restoration actions occurring in the watershed both historically and planned
 - Action determined by
 - Expert Panel Process
 - Adaptive management using Monitoring Data

Monitoring and Evaluation/Adaptive Management/Restoration

Habitat restoration actions ISEMP is evaluating in the Lemhi Watershed

Project Implementation Tributary Reconnect Measures

Canyon Creek

Big Timber Creek

"Reconnect new Habitat"

Lemhi Little Springs Creek Reconnect Habitat Restoration

Lemhi River Flow Limiting Factors and Habitat Actions

USGS	Date
13304450	08/24/2011
13304450	08/25/2011
13304450	08/26/2011
13304450	08/27/2011
13304450	08/28/2011
13304450	08/29/2011
13304450	08/30/2011
13304450	08/31/2011

Flow (cfs)
14.6
14.5
14.5
14.5
14.5
14.3
14.0
14.1

- Why a life-stage, habitat based model?
 - Life-stage response occur at a variety of scales
 - <u>Spatial</u>: Fry = site, Parr = tributary , Smolt = watershed
 - <u>Temporal</u>: Seasonal use spring, summer, fall
 - Restoration actions ("habitat changes") influence lifestages disproportionally
 - Stream restoration actions change habitat types at different temporal/spatial changes (e.g. cumulative effects, channel-types, etc.)
 - Population dynamics are influenced by more than habitat changes (e.g. hatcheries, harvest)

General Anadromous Life-Stage Hab. Use Spatial/temporal scale complexity

ISEMP Watershed Model -Habitat/Fish Interactions

-Multi-Stage Beverton-Holt

where

 R_{t+1}

- N_{i,t} = number of fish at life stage (i), time (t)
- $N_{i+1,t+1}$ = number of fish in next life-stage (i+1) and time (t+1)
- p_{i,t} = **productivity**, or maximum survival rate for life-stage (i)
- c_{i,t} = <u>carrying capacity</u>, o maximum numbers that survive life-stage
 (i)
- Moussalli & Hilborn (1976)

How to relate to habitat?

- productivity (p)
- Productivity = maximum survival from one life stage to the next
 - <u>OR</u>, Habitat influence on productivity = quality of habitat is related to multiple factors (e.g. land-use)
 - Or, one part of the watershed has a better survival than another

 $p_i = S_i$

 $p_i = S_i * E_l$

 $\sum \left[E_{i,q} \right] \times \left[L_{q,k} \right]_{t}$

 $p_{i,t} = S_i \times \frac{q=1}{2}$

- So, add a "scalar" (E) to adjust survival by land-use type (I)
 (OR channel-type or other geomorphic characteristic)
- But, we are interested predicting restoration effect and where they occur, we adapt the equation for
 - t = temporal periods (e.g. year, season, etc.)
 - k =spatial context (e.g. watershed, tributary, et

ISEMP Watershed Model - carrying capacity (c)

- Carrying Capacity = <u>max</u>. number of fish that survive life-stage
 - <u>OR</u> in a habitat context = numbers of fish by life-stage *i* in a specific habitat type *j*
 - D = density of fish
 - H = (e.g. pools) or reach type (e.g. plane-bed)

$$c_{i} = \sum_{j=1}^{n} \left[H_{j} \right] \times \left[D_{j,i} \right]$$

- But, we are interested predicting restoration effect and where they occur we adapt the equation for
 - t = temporal periods (e.g. year, <u>seasonal</u>, etc.)
 - k = spatial context (e.g. watershed, tributary, etc.)
- where
 - A = areal extent (or other spatial measure)
 - L = Land use type (or other characteristic)

$$c_{k,i,t} = A_k \times \sum_{j=1}^n \left[\left| \sum_{q=1}^n \left[H_{j,q} \right] \times \left[L_{q,k} \right]_t \right] \times \left[D_{j,i} \right] \right]$$

Гг

ISEMP Watershed Model - Seasonality component

Carrying Capacity

- Problem = Habitat sampled once/yearly
- Solution = utilize the information in the Digital Elevation Model to determine seasonal habitat availability
- ISEMP/CHaMP developed River Bathymetric Toolkit (RBT)
 - Predictive modeling of habitat types

ISEMP Watershed Model **Estimated** -Sharma et al (2005) Number of Parr Predicted $N_{i,t}$ $N_{i+1,t+1}$ Number of Migrants $p_{i,t}$ $C_{i,t}$ Max Fish Max Fish Stream Survival Density The Balic Watershed N Area N_{k,i_t} $N_{k,i+1_t}$ N_{k,i_t} $\sum_{q=1}^{n} \left[E_{i,q} \right] \times \left[L_{q,k} \right]_{t}$ $\sum_{q=1}^{n} \left[M_{j,q} \right] \times \left[L_{q,k} \right]_{t} \left| \left[D_{j,i} \right] \right]$ $A_k \times$ Sr_i > $\sum_{k=1}^{n} \left[L_{q,k} \right]_{t}$

Lemhi River Effectiveness Monitoring (ISEMP)

What do we measure?

- FISH IN = Adult Salmon and Steelhead SPAWNERS Returns
 - Abundance (PIT Arrays)
 - Redds
 - TODAY my example data – stream surveys (stream population ABUNDANCE)
 - Screw traps (SURVIVAL & MIGRATION)
 - PIT tag a rays (*SURVIVAL* & *MOVEMENTS*)
 - Downstream Dams (SURVIVAL)
- HABITAT ISEMP/CHaMP surveys
 - 160 gr and surveys 2009-Present
 - QUANTITY and QUALITY

Lemhi River Sampling Design

Single Populations of: 1) Spring Chinook Sal 2) Steelhead

Stratification: First Level = 16 Watersheds Second Level = Reconnect Schedule

- 1) Existing
- 2) Phase 1 (2008-2012)
- 3) Phase 2 (2012–2020)

What do fish really do?

Rotary ScrewTraps

Reporting Units

Existing Phase 1

Phase 2

ISEMP Tandem Arrays

Bona non O

Lemhi River Sampling Sites 2009-2012 <u>Fish and Habitat ~ 95% Overlap</u>

SCREW TRAPS

Instream PIT Detection Sites

- Example Watershed (Lemhi)

- FISH – IN

- How we get the "Adult Females" for the Productivity Parameter
 - "migrants/ female spawner"

- Example Watershed (Lemhi)
 - FISH "OUT"
 - Life Stage ("egg", "fry", "parr", "smolt", etc.)
 - Standing Crop (Indicator = total fish)
 - By watershed and tributary (multiple spatial and temporal scales)
 - Different than habitat
 - Fish populations have huge yearly variability
 - Estimated each year
 - objective was to sample all sites in all habitat panels per year.
 - abundance estimate at each site

ISEMP Watershed Model -Estimating Watershed Juvenile Abundance (GRTS)

Lemhi River Chinook Salmon

Year	Area	Number Sampled	Estimate (Total)	Lower 95% C.I.	Upper 95% C.I.
2009	All.Sites	59	2,792	40	5,544
2010	All.Sites	80	108,569	42,756	174,383
2011	All.Sites	72	64,770	35,527	94,012
2012	All.Sites	73	96,016	49,189	142,843

ISEMP Watershed Model -Estimating Tributary Juvenile Abundance

Lemhi Strata Estimates = Chinook Salmon

Year	Area	Number Sampled	Estimate (Total)	Lower 95% C.I.	Upper 95% C.I.	
2011	All.Sites	72	64,770	35,527	94,012	
2011	Existing	22	64,714	38,744	90,684	
2011	Hayden	7	16,065	(1,116)	33,246	
2011	Lemhi	10	47,786	26,556	69,015	
2011	Little Eightmile	2	-	-	-	
2011	Agency	6	-	-	-	
2011	Big Eightmile	2	-	-	-	
2011	Big Springs	5	864	200	1,528	
2011	Big Timber	6	-	-	-	
2011	Bohannon	5	-	-	-	
2011	Canyon	6	56	(34)	145	
2011	Hawley	5	-	-	-	
2011	Kenney	5	-	-	-	
2011	Little Springs	2	-	-	-	
2011	Pattee	5	-	-	-	
2011	Texas	4	-	-	-	

ISEMP Watershed Model -Estimating Tributary Juvenile Abundance (GRTS)

Lemhi Hayden Creek Chinook Salmon

Year	Area	Number Sampled	Estimate (Total)	Lower 95% C.I.	Upper 95% C.I.
2009	Hayden	13	2,256	(569)	5,081
2010	Hayden	13	26,909	(16,671)	70,488
2011	Hayden	7	16,065	(1,116)	33,246
2012	Hayden	7	11,080	(2,770)	24,930

Year	Age 0	Age 1	Age 2
2011	91.6%	8.0%	0.4%

- Estimate Quantity of Habitat (GRTS)
 - From 2011-2012 Lemhi GRTS sites
 - Not complete, will use all 3 years of sites to determine habitat "Status"
 - Assume that habitat variability is small between years
 - Note: we already have a 2009-2010 sample
 - (did not use for this analysis)
 - Indicator
 - Habitat Type Volume (pool, fast turbulent , fast nonturbulent)
 - Total Estimate by Watershed and Tributaries

ISEMP Watershed Model -Estimating Watershed Habitat Capacity (GRTS) 2011-2012 data

TOTAL VOLUME (m³)– Lemhi River

Indicator	Area	Number Sampled	Estimate (Total)	Lower 95% C.I.	Upper 95% C.I.
Wetted Volume	All	62	113,633	90,767	136,498
Pool Volume	All	62	55 <i>,</i> 301	38,796	71,806
Fast Turbulent	All	62	32,948	19,299	46,598
Fast Non-Turbulent	All	62	25,085	18,274	31,896

-Estimating Watershed Habitat Capacity (GRTS)

TOTAL POOL VOLUIVIE (m ³)		Estimate	Lower 95% C.I.	Upper 95% C.I.
Tributary	Sampled	(Total)	Lower 5570 c.n.	opper 55% c.i.
Agency Creek	5	1,325	915	1,735
Big Eightmile	4	156	54	257
Big Timber Creek	5	1,611	390	2,832
Bohannon Creek	3	192	70	315
Canyon Creek	5	855	533	1,177
Hawley Creek	2	189	(78)	456
Hayden Creek	5	3,305	1,687	4,924
Kenney Creek	5	358	198	517
Lemhi River	10	46,346	29,987	62,705
Little Eightmile	3	77	20	134
Little Spring	2	158	(151)	467
Mill Creek	2	2	(2)	5
Pattee Creek	6	145	67	223
Texas Creek	5	581	140	1,023

- Watershed (Lemhi)

Combining habitat and fish data into "useful management spatial scales"

- Indicators

- Carrying Capacity (Habitat Volume)
 - From RBT by habitat type
- Fish Population Size

ISEMP Watershed Model - Habitat Volume, 2012 Fish Population Estimate - Lemhi Watershed (Habitat Volume)

- Original "Anadromous" Habitat in Lemhi Watershed

46,346 m³

20,561 m³

67,955 fish

77,795 fish

 $= 109,663 \text{ m}^3$

=

=

- Habitat Volume, 2012 Fish Population Estimate

ISEMP Watershed Model Streams Reconnected 2008-2012 Habitat Volume, 2012 Fish Population Estimate

	Bohannon CreekPool Volume= 192 m³Fast Non-Turbulent= 94 m³Fast Turbulent= 1,155 m³
Kenny CreekPool Volume= 358 m^3 Fast Non-Turbulent= 80 m^3 Fast Turbulent= $1,808 \text{ m}^3$ Chinook Juveniles= 25 fish Steelhead Juveniles= $15,518 \text{ fish}$	Chinook Juveniles = 0 fish Steelhead Juveniles = 4,043 fish
Big Timber CreekPool Volume= 1,610 m³Fast Non-Turbulent= 1,166 m³Fast Turbulent= 5,114 m³Chinook Juveniles= 146 fishSteelhead Juveniles= 24,817 fish	Canyon Creek` Pool Volume = 855 m³ Fast Non-Turbulent = 252 m³ Fast Turbulent = 3,262 m³ Chinook Juveniles = 168 fish Steelhead Juveniles = 3,556 fish

ISEMP Watershed Model Streams To be Reconnected 2012 – 2020 Habitat Volume, 2012 Fish Population Estimate

- Watershed (Lemhi)

How to use the data to direct restoration efforts

- What are the limiting factors controlling the Lemhi River Spring Chinook Population?
- What tributaries contain the most habitat for Lemhi River
 Spring Chinook Population
 - Or which should be add first?
 - <u>Solution = model the influence each tributary or tributaries have most</u> influence on population growth

- Example Watershed (Lemhi)

	Habitat Increase (%)				
Scenario	Pool	Rapids	Runs	Riffles	Total Area
	20/	604	201	224	201
Existing + Kenney Cr.	2%	6%	3%	3%	3%
Existing + Big Timber Cr.	14%	30%	13%	15%	15%
Existing + Kenney and Hawley Cr.	8%	20%	11%	10%	10%
Existing + Kenney, Hawley, and					
Texas Cr.	20%	32%	21%	19%	21%
Exiting + Kenney, Hawley, Texas,					
and Big Timber Cr.	34%	62%	34%	34%	36%

- Example Watershed (Lemhi) CHINOOK SALMON

17	124	
1 2.7%	126	1.6%
58 15.2%	132	6.5%
)5 9.7%	131	5.6%
	138	<u>11.3%</u> 16.1%
	47 41 2.7% 58 15.2% 05 9.7% 23 22.5% 06 37.7%	41 2.7% 126 58 15.2% 132 05 9.7% 131 23 22.5% 138

- Example Watershed (Lemhi) CHINOOK SALMON

- Flexible modeling environment that informs freshwater productivity as a function of:
 - Management actions
 - Habitat conditions
 - Fish population characteristics
- Informs management/restoration actions (i.e. Lemhi tributary reconnections)
 - Work in the Lemhi emulates other management/restoration actions in other
 - "Exportable"
 - Identify the life-stage(s) that limit fish productivity