Lemhi River Effectiveness Monitoring
（ISEMP／CHaMP）
Using Fish and Habitat data in the ISEMP Watershed
Model to evaluate the Lemhi Conservation Plan
Funding：
BPA／PCSRF／NOAA
Lemhi River Effectiveness Monitoring data in the ISEMP Watershed

-1

S．

Using Fish and Habitat data in the ISEMP Watershed

．

 ． ，

 ．

震
都

－

正

ISEMP Watershed Modeł

Goal = relate watershed restoration efforts to fish population changes (response measure for "Bi-op")

- We need to measure the success of our Restoration Actions at a population scale
- Use the monitoring data to plan future restoration actions (i.e. adaptive management)
- Have a tool that translates habitat into fish
- Identify what is limiting fish population growth
- BUT, very difficult to disentangle ocean and mainstem migration conditions from freshwater habitat conditions
- "Black box" problem; highly complex

Lemhi River Effectiveness Monitorinğ

- Measure that part of the anadromous life-cycle which is directly influenced by tributary habitat
- Productivity $=$ migrants/spawner
- Abundance = population growth
- Freshwater productivity as a function of habitat quantity/quality - in life-cycle context.
- identify upper limit for improvement in FW productivity
- identify life-stage(s) with greatest/least potential for change (and interaction)
Today = merging CHaMP and ISEMP Data to evaluate a fish population

ISEMP Watershed Model

Lemhi Watershed (Brief Background)

- Successful \& active watershed council
- significant private cooperation
- federal/state/local agency cooperation
- A single population of Steelhead
- A single population of spring Chinook Salmon
- Historically, one the largest Snake River spawning populations
- Extensive Restoration actions occurring in the watershed both historically and planned
- Action determined by
- Expert Panel Process
- Adaptive management using Monitoring Data

Monitoring and Evaluation/Adaptive Management/Restoration

Habitat restoration actions ISEMP is evaluating in the Lemhi Watershed

Lemhi Little Springs Creek Reconnect Habitat Restoration

ISEMP Watershed Modeł

- Why a life-stage, habitat based model?
- Life-stage response occur at a variety of scales
- Spatial: Fry = site, Parr = tributary , Smolt = watershed
- Temporal: Seasonal use - spring, summer, fall
- Restoration actions ("habitat changes") influence lifestages disproportionally
- Stream restoration actions change habitat types at different temporal/spatial changes (e.g. cumulative effects, channel-types, etc.)
- Population dynamics are influenced by more than habitat changes (e.g. hatcheries, harvest)

General Anadromous life-Stage Hab. Use Spatial/tempöral scale complexity

Migrants

ISEMP Watershed Model

-Habitat/Fish Interactions

ISEMP Watershed Model

-Multi-Stage Beverton-Holt

Moussalli \& Hilborn (10/6)
How to relate to habitat?
(i)
Moussalli \& Hilborn (10, 6)
How to relate to habitat?
(i)
Moussalli \& Hilborn (10
How to relate to habitat?

How to relate to habitat?

蹅

 .

? -
\qquad

\square \square

\qquad
\square

ISEMP Watershed Model

- productivity (p)
- Productivity = maximum survival from one life stage to the next
- OR, Habitat influence on productivity = quality of habitat is related to multiple factors (e.g. land-use)
- Or, one part of the watershed has a better survival than another
- So, add a "scalar" (E) to adjust survival by land-use type (/)
(OR channel-type or other geomorphic characteristic)
- $t=$ temporal periods (e.g. year, season, etc.)
- $k=$ spatial context (e.g. watershed, tributary, e

$$
p_{i}=S_{i}
$$

$$
\square
$$So, add a "scalar"

ISEMP Watershed Model

- carrying capacity (c)
- Carrying Capacity = max. number of fish that survive life-stage
- OR in a habitat context = numbers of fish by life-stage i in a specific habitat type j
- D = density of fish
- H = (e.g. pools) or reach type (e.g. plane-bed)

$$
c_{i}=\sum_{-1}^{n}[\mu] \backslash\left[p_{0, t}\right]
$$

- But, we are interested predicting restoration effect and where they occur we adapt the equation for
- $t=$ temporal periods (e.g. year, seasonal, etc.)
- $k=$ spatial context (e.g. watershed, tributary, etc.)
- where
- A = areal extent (or other spatial measure)
- L = Land use type (or other characteristic)

ISEMP Watershed Model

- Seasonality component
- Problem = Habitat sampled once/yearly

- Solution = utilize the information in the Digital Elevation Model to determine seasonal habitat availability
- ISEMP/CHaMP developed River Bathymetric Toolkit (RBT)
- Predictive modeling of habitat types

Carrying Capacity

\section*{ISEMP Watershed Model}
 ISEMP Watershe -Sharma et al (2005)

Predicted
Number of
Migrants

Max Fish
Survival
The Ba. ic Watershed N Area

Max Fish
Density

Predicted
Number of
Migrants
Max Fish
Survival

$$
\sum_{q=1}^{n}\left[L_{q, k}\right]_{t}
$$

Estimated

Number of Parr
Number of Parr

What do we measure?

- FISH IN = Adult Salmon and Steelhea d SPAWNERS Re turns
- Abundance (PIT Arrays)
- Redds

TODAY - my example data
TODAY - my example data

- Downst/eam Dams (SURVIVAL)
- HABITAT - ISEMP/CHaMP surveys
- 160 gr and surveys 2009-Present
- QUANTITY a Id QUALITY

nt
號

\title{

Lemhi River Effectiveness Monitoring

(ISEMP)

}

(ISEMP)

}

e
.

$x=$

Lemhi River Sampling Design

Single Populations of:

1) Spring Chinook Salrie
2) Steelhead

Stratification:
First Level = 16 Watersheds
Second Level = Reconnect
Schedule

1) Existing
2) Phase 1 (2008-2012)
3) Phase 2 (2012-2020)

Lemhi River Sampling Sites 2009-2012

Fish and Habitat ~ 95\% Overlap

SCREW TRAPS

- Example Watershed (Lemhi)
- FISH - IN
- How we get the "Adult Females" for the Productivity Parameter
- "migrants/ female spawner"

ISEMP Watershed Model

- "mist
\qquad
 get the "Adult Females" for the

 $+$ ∇

.

L

(Lemhi) \qquad .

FISH IN = Adult Spawner Abundance - PIT Arrays Estimating Steelhead and Chinook Adult Escapement

．
\square

ISEMP Lemhi Chinook Numbers 2009-2011

ISEMP Lemhi Omykiss Numbers 2009-2011

ISEMP Watershed Modet

-Estimating Watershed Juvenile Abundance (GRTS)

Lemhi River Chinook Salmon

Year	Area	Number Sampled	Estimate (Total)	Lower 95\% C.I.	Upper 95% 9.I.
$\mathbf{2 0 0 9}$	All.Sites	59	$\mathbf{2 , 7 9 2}$	40	5,544
$\mathbf{2 0 1 0}$	All.Sites	80	$\mathbf{1 0 8 , 5 6 9}$	42,756	174,383
$\mathbf{2 0 1 1}$	All.Sites	72	$\mathbf{6 4 , 7 7 0}$	35,527	94,012
$\mathbf{2 0 1 2}$	All.Sites	73	$\mathbf{9 6 , 0 1 6}$	$\mathbf{4 9 , 1 8 9}$	$\mathbf{1 4 2 , 8 4 3}$

ISEMP Watershed Mode
 -Estimating TributaryJuvenile Abundance

Lemhi Strata Estimates $=$ Chinook Salmon

Year	Area	Number Sampled	Estimate (Total)	Lower 95\% C.I.	Upper 95\% C.I.
2011	All.Sites	72	$\mathbf{6 4 , 7 7 0}$	35,527	94,012
2011	Existing	22	$\mathbf{6 4 , 7 1 4}$	38,744	90,684
2011	Hayden	7	$\mathbf{1 6 , 0 6 5}$	$(1,116)$	33,246
2011	Lemhi	10	$\mathbf{4 7 , 7 8 6}$	26,556	69,015
	Little				
2011	Eightmile	2	-	-	-
2011	Agency	6	-	-	-
2011	Big Eightmile	2	-	-	-
2011	Big Springs	5	$\mathbf{-}$	$\mathbf{-}$	
2011	Big Timber	6	$\mathbf{8 6 4}$	200	1,528
2011	Bohannon	5	-	-	-
2011	Canyon	6	-	-	-
2011	Hawley	5	$\mathbf{5 6}$	(34)	145
2011	Kenney	5	-	-	-
2011	Little Springs	2	-	-	-
2011	Pattee	5	-	-	-
2011	Texas	4	-	-	-

ISEMP Watershed Modet

-Estimating Tributary Juvenile Abundance (GRTS)
Lemhi Hayden Creek Chinook Salmon

Year	Area	Number Sampled	Estimate (Total)	Lower 95% C.I.	Upper 95% C.I.
$\mathbf{2 0 0 9}$	Hayden	13	$\mathbf{2 , 2 5 6}$	(569)	5,081
$\mathbf{2 0 1 0}$	Hayden	13	$\mathbf{2 6 , 9 0 9}$	$(16,671)$	70,488
$\mathbf{2 0 1 1}$	Hayden	7	$\mathbf{1 6 , 0 6 5}$	$(1,116)$	33,246
$\mathbf{2 0 1 2}$	Hayden	$\mathbf{7}$	$\mathbf{1 1 , 0 8 0}$	$(2,770)$	24,930

Year	Age 0	Age 1	Age 2
2011	91.6%	8.0%	0.4%

2012

ISEMP Watershed Model

P Watershed Model
ate Quantity of Habitat (GRTS)
m 2011-2012 Lemhi GRTS sites
Not complete, will use all 3 years of sites to
determine habitat "Status"
Assume that habitat variability is small between
years
Note: we already have a 2009-2010 sample

- (did not use for this analysis)
dicator
Habitat Type Volume (pool, fast turbulent , fast non-
turbulent)

- Assume that habitat variability is small between
years

(
\qquad

- 1

[^0]\qquad
.

\square
\square
\square
\square

\qquad

Abstract

\qquad

\square

Abstract

$$
\begin{aligned} & \text { turbulent) } \\ & \text { - Total Estimate by Watershed and Tributaries } \end{aligned}
$$

號

\square

ISEMP Watershed Modet

-Estimating Watershed Habitat Capacity (GRTS)
2011-2012 data
TOTAL VOLUME (m³)- Lemhi River

Indicator	Area	Number Sampled	Estimate (Total)	Lower 95\% C.I.	Upper 95\% C.I.
Wetted Volume	All	62	$\mathbf{1 1 3 , 6 3 3}$	90,767	136,498
Pool Volume	All	62	55,301	38,796	71,806
Fast Turbulent	All	62	$\mathbf{3 2 , 9 4 8}$	19,299	46,598
Fast Non-Turbulent	All	62	$\mathbf{2 5 , 0 8 5}$	18,274	31,896

ISEMP Watershed Model

-Estimating Watershed Habitat Capacity (GRTS)

TOTAL POOL VOLUME (m³)		Estimate (Total)	Lower 95\% C.I.	Upper 95\% C.I.
Tributary	Sampled			
Agency Creek	5	1,325	915	1,735
Big Eightmile	4	156	54	257
Big Timber Creek	5	1,611	390	2,832
Bohannon Creek	3	192	70	315
Canyon Creek	5	855	533	1,177
Hawley Creek	2	189	(78)	456
Hayden Creek	5	3,305	1,687	4,924
Kenney Creek	5	358	198	517
Lemhi River	10	46,346	29,987	62,705
Little Eightmile	3	77	20	134
Little Spring	2	158	(151)	467
Mill Creek	2	2	(2)	5
Pattee Creek	6	145	67	223
Texas Creek	5	581	140	1,023

ISEMP Watershed Model

- Watershed (Lemhi)
- Combining habitat and fish data into "useful
management spatial scales"

Combining habitat and fish data into "useful
management spatial scales"

- Indicators
- Carrying Capacity (Habitat Volume)
- From RBT by habitat type
- Fish Population Size
 5

- Fish Population Size

$$
5
$$

\qquad (2) =

2
 , -

Capacity (Habitat Volume)
-正
■
scales"
. , \square

$$
>
$$

ISEMP Watershed Model
 - Habitat Volume, 2012 Fish Population Estimate
 - Lemhi Watershed (Habitat Volume)

ISEMP Watershed Model

- Original "Anadromous" Habitat in Lemhi Watershed
- Habitat Volume, 2012 Fish Population Estimate
Mainstem Lemhi River VOLUME

Mainstem Lemhi River VOLUME	
Pool Volume	$=46,346 \mathrm{~m}^{3}$
Fast Non-Turbulent	$=20,561 \mathrm{~m}^{3}$
Fast Turbulent	$=109,663 \mathrm{~m}^{3}$

Fast Non-Turbulent $=20,561 \mathrm{~m}^{3}$ Fast Turbulent $=109,663 \mathrm{~m}^{3}$
Chinook Juveniles = 67,955 fish Steelhead Juveniles = 77,795 fish
Hayden Creek VOLUME ("control")
Pool Volume $=3,305 \mathrm{~m}^{3}$
Fast Non-Turbulent $=1,546 \mathrm{~m}^{3}$
Fast Turbulent $=9,157 \mathrm{~m}^{3}$
Chinook Juveniles = 26,909 fish
Steelhead Juveniles = 11,186 fish

$-30=$

\qquad

\square

\square

\square

 ,

ISEMP Watershed Model

Streams Reconnected 2008-2012

Habitat Volume, 2012 Fish Population Estimate

ISEMP Watershed Model
 - Streams To be Reconnected 2012-2020
 - Habitat Volume, 2012 Fish Population Estimate
 , $x-3=$

.

Pool Volume	$=2,633 \mathrm{~m}^{3}$
Fast Non-Turbulent	$=1,387 \mathrm{~m}^{3}$
Fast Turbulent	$=9,815 \mathrm{~m}^{3}$

Chinook Juveniles = ? fish
Steelhead Juveniles $=\mathbf{7 8 , 5 6 5}$ fish

- Watershed (Lemhi)

How to use the data to direct restoration efforts

- What are the limiting factors controlling the Lemhi River Spring Chinook Population?
- What tributaries contain the most habitat for Lemhi River Spring Chinook Population
- Or which should be add first?
- Solution = model the influence each tributary or tributaries have most

ISEMP Watershed Modet

- Watershed (Lemni)
-

\qquad 8

-

influence on population growth

-

er

ISEMP Watershed Modet

- Example Watershed (Lemhi)

	Habitat Increase (\%)				
Scenario	Pool	Rapids	Runs	Riffles	Total Area
Existing + Kenney Cr.	2\%	6\%	3\%	3\%	3\%
Existing + Big Timber Cr .	14\%	30\%	13\%	15\%	15\%
Existing + Kenney and Hawley Cr.	8\%	20\%	11\%	10\%	10\%
Existing + Kenney, Hawley, and Texas Cr.	20\%	32\%	21\%	19\%	21\%
Exiting + Kenney, Hawley, Texas, and Big Timber Cr.	34\%	62\%	34\%	34\%	36\%

ISEMP Watershed Modet

- Example Watershed (Lemhi) CHINOOK SALMON

Scenario	CC	\% Increase	Productivity	\% Increase
Existing (Lemhi River and Hayden Creek)	91,947			
Existing + Kenney Cr.	94,441	2.7%	126	1.6%
Existing + Big Timber Cr.	105,958	15.2%	132	6.5%
Existing + Kenney and	100,905		9.7%	
Hawley Cr.			131	5.6%
Existing + Kenney, Hawley, and Texas Cr.	112,623	22.5%	138	11.3%
All	126,606	37.7%	144	16.1%

OOK SALMON
\qquad
 7

ISEMP Watershed Modet

- Example Watershed (Lemhi) CHINOOK SALMON

ISEMP Watershed Model

- Flexible modeling environment that informs freshwater productivity as a function of:
- Management actions
- Habitat conditions
- Fish population characteristics
- Informs management/restoration actions (i.e. Lemhi tributary reconnections)
- Work in the Lemhi emulates other management/restoration actions in other
- "Exportable"
- Identify the life-stage(s) that limit fish productivity

[^0]: (did not use for this analysis)

