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1. Introduction 

 

The Integrated Status and Effectiveness Monitoring Program (ISEMP) and its companion 

project, the Columbia Habitat Monitoring Program (CHaMP), provide long term monitoring of 

anadromous salmonid population and habitat status in the Columbia River Basis.  These 

monitoring programs extensively utilize probability based survey designs, such as Generalized 

Random Tessellation Stratified (GRTS) designs, that enable efficient sampling of a spatially 

correlated resource, such as fish density by location in a stream network.    The R package 

spsurvey includes a set of analysis tools created specifically for design based analysis of 

probability samples such as those obtained by GRTS designs.   

 

This manual is intended as a user’s guide, specifically geared toward users of ISEMP / CHaMP 

data sets, for using the spsurvey tools to analyze and draw inference from sampled data.  It is 

assumed that the readers, while having some experience using R, are not R experts, nor 

statisticians.   

 

There are excellent user’s guides and examples already available for using spsurvey tools [3, 7].   

This document, however, is geared specifically toward ISEMP /CHaMP data users.  As such, it 

will attempt to address specific issues and points of confusion commonly encountered by these 

users, as well provide some guidance that may be more accessible to non-statisticians than that 

typically found in on-line documentation of R packages.   In addition, the R code provided by 

this guide may be useful as template for those analyzing ISEMP / CHaMP data.  Rather than 

create scripts from scratch, users may wish to simply modify the code included here. 

 

The spsurvey package includes functions to assist in both generating probability based sampling 

plans as well as functions used to analyze data collected from such plans.  This document will 

focus on use of the analysis functions used after a sampling is completed.  The main spsurvey 

functions that CHaMP / ISEMP users will use to analyze data are cont.analysis and cat.analysis.  

The function cont.analysis is used to analyze continuous variables (i.e. estimate population 

means, quantiles, corresponding confidence intervals, etc.), while cat.analysis is used to 

analyzing categorical response variables.  In addition to estimating distributions of site level 

metrics, these tools can be used to estimate population totals for metrics such as total number of 

fish across the sample frame, or subgroup of the sample frame. 

 

The R package spsurvey is authored by Tom Kincaid and Tony Olsen, with contributions from 

Don Stevens, Christian Platt, Denis White, and Richard Remington.  It is currently maintained 

and updated by Tom Kincaid.  For up to date details, refer to the cran.r-project.org page at:  

http://cran.r-project.org/web/packages/spsurvey/index.html [1]. 

 

 

http://cran.r-project.org/web/packages/spsurvey/index.html
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2. General Background Statistics 

 

While not intended as a full treatise on sampling, there are a few basic concepts that are useful 

for the spsurvey user to review.  These concepts are key to understanding the advantages and 

limits of probability based sampling analysis. 

 

Design Based Inference versus Model Based Inference 

 

Design based inference, in the context of sampling, seeks to describe and draw conclusions about 

a population based on the elements of a sample.  Conversely, model based inference seeks to 

estimate parameters that describe the relationship between variables in an assumed or derived 

model.  Probability surveys, such as GRTS sampling, and the spsurvey functions described here, 

serve to facilitate design based inference. 

 

In terms of CHaMP / ISEMP data, for metrics such as fish density (measured by site, within a 

stream network), design based inference will yield estimates and uncertainties of fish densities 

across all sites within the sampling frame.  Additionally, it can be used to estimate the total 

abundance over the entire sampling frame, or within subsets of sites.   

 

The spsurvey tools do NOT provide tools for model based inferences.  For example, a researcher 

may posit a model suggesting fish abundance is a linear function of stream power, habitat 

characteristics, and water temperature.  Model based inferential tools are needed to estimate 

model coefficients for such a model.  The spsurvey functions do NOT enable estimations of 

coefficients for such models.   

 

While GRTS samples and spsurvey tools are geared toward design based analysis, that does not 

preclude a design based analysis of “meta-data” that are actually model based parameter 

estimates from individual sites.  For example, a researcher may be interested in the change in fish 

density over time.  The spsurvey functions (or design based analyses in general) do not allow for 

the direct estimate of a slope parameter for the change in fish density per unit of time.  However, 

if multiple years of data exist at each site measured, a model based estimate of this slope could 

be calculated for each site.  The set of slopes, by site, could then be examined via a design based 

analysis using the spsurvey analysis tools, just as if slope (change in fish abundance over time) 

were a single measurement at each site. 

 

Additional Definitions 

 

 Probability Based Sampling: Random sampling, where each item in a sampling frame 

has an a-priori probability of being selected in the sample.  In simple random sampling, 
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all elements in a sampling frame have equal probability of selection.  In stratified, or 

variable probability sampling, elements within a sampling frame may have differing 

probability of being sampled.  All are nevertheless examples of probability based 

sampling. 

 

 Sampling Frame: A sampling frame is the source containing all elements from which 

samples may be drawn.  Ideally, the sampling frame contains each element within a 

population of interest, and contains no additional elements.  In practice, a perfect 

sampling frame is rarely achieved.  In CHaMP / ISEMP sampling, a list of all stream 

segments in all streams in a watershed, often in the form of a shapefile, is often used as 

the sampling frame. 

 

 Sample: The sample refers to the elements of the sampling frame that were selected via a 

probability based sampling method.  In CHaMP / ISEMP samples, the sample is simply 

the list of sites that are selected for measurements.  These are generally sampled using a 

GRTS sampling procedure. 

 

 

3. R Basics 

 

Included below is a brief description of how to find R for download and how at install the 

spsurvey package of functions, as well as a brief description of data types commonly used in the 

spsurvey functions (as well as in most R functions).  For beginner R users, it is recommended 

that the user walk through one of the tutorials available at the link below. 

 

Installing R 

 

The spsurvey analysis tools are available to be used within the R programming language.  R is a 

free, open source programming language designed specifically for statistical computing and 

graphics.  The software and documentation are available free at:  http://www.r-project.org/. 

 

Common R Data Structures: Vectors, Lists, and Data frames 

 

It is assumed that the reader has some rudimentary experience programming in R and using basic 

R functions and data structures.  If not, it is suggested to review some of the on-line 

documentation and examples available.  Nevertheless, it may be useful here to describe to data 

structures used extensively in the spsurvey tools:  vectors, lists, and data frames. 

 

 

 

http://www.r-project.org/
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Vectors 

Vectors, as data structures in R, are simply ordered lists of data.  The can be created using the 

combine function “c”, as in:   

 

My.vector= c(5, 7, 33).   

 

Optionally, items in vectors can be named using “names” function or by assigning names within 

combine function:  

 

My.vector=c (“y1” = 5, “y2” = 7, “y3”=33) 

 

Components of a vector are accessed using square brackets after the vector name, with the index 

position in the bracket.  For example, if “My.vector” is as above, then “My.vector[3]” returns the 

value 33. 

 

Lists 

A list is similar to a vector in R, the main difference that the components of a list need not be 

single values, but can be data structures of any sort.  For example, a list might contain a list of 

named vectors, or even a list of lists.  It addition, components of a list are typically named, as in 

the following: 

 

My.list = list("one"=1, "two"=2, "three"=3) 

 

Components of a list can be accessed as are vectors using square brackets and an index number, 

or by using the “$” symbol to specify the name of the component within the list being accessed.  

For example, “My.list$two” returns the numeric value 2. 

 

 

Data frames 

Data frames are general and flexible data structures useful for passing large amounts of related 

information to and from functions in R.  A data frame is similar to a list, except that the 

components can be of multiple types within the same data frame.  For example, a single data 

frame could contain a vector, a list, an single (atomic) variable, and even data frames within the 

data frame.  To access items within a data frame, the “$” symbol is used, as in accessing 

components of a list by name, shown above. 

 

Note: the “attach” function can be used to bring components of a data frame into directly 

accessible memory.  For example, if a data frame called “my.data.frame” contained a vector 

“my.vector”, and  a list “my.list”, they could be accessed either as: my.data.frame$my.vector and 

my.data.frame$my.list, or by “attach(my.data.frame) and then directly accessing “my.vector” and 
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“my.list”.  While this can be useful when items in a data frame are accessed repeatedly, caution 

should be used with the attach function, as using it multiple times, or failing to “detach” data, can 

results in data masking issues and often causes great confusion.  When in doubt, avoid using the 

“attach” command. 

 

 

4. Spsurvey Package Overview 

 

General Description 

The spsurvey package is one of numerous add-on packages available within the R environment.   

 

Installing spsurvey 

To download and install spsurvey, open R and perform the following steps:  click on “install 

package” and select a CRAN mirror site (any site should work; it may be most efficient to pick 

one geographically close to your current location).  Scroll down and select the package 

“spsurvey”, after which installation will take place automatically.  Installation of this package 

need only be done once for the computer on which R is loaded. 

 

Sampling Design Functions 

While this document covers the analysis functions in spsurvey, a brief note on the survey design 

tools in spsurvey is warranted.  CHaMP / ISEMP surveys are usually designed using a GRTS 

(Generalized Random Tessellation Stratified) sampling process [6].  GRTS sampling is a 

probability based sampling technique that provides a spatially balanced sample, which is useful 

for efficiently assessing a population distribution. 

 

The “grts” function in spsurvey is provided to assist the user in generating such designs.  

Arguments to the “grts” function include the sampling frame (often in the form of a shapefile), 

and a design argument which describes the sampling probability assigned to each member of the 

sampling frame.  Oversampling needs are also input as arguments to the grts function.  A list of 

sites to sample, the weights assigned to each site, and over-sample sites are returned from the 

grts function. 

 

The “adjwgt” is used when oversample sites are used.  Oversample sites will be used in the event 

that one or more sites selected in the initial sample cannot be used for some reason.  An 

advantage of GRTS sampling is that it enables the user to replace sampled sites that cannot be 

sampled with over-sampled sites, while maintaining the spatial balance of the original sample.  

When over-sample sites are used, the weights must be adjusted on all sampled sites, such that the 

relative weights are maintained and the total weights add up to the total resource size.  In the 

case of stream networks (a linear resource), the total resource size is the total length of stream 
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included in the sampling frame.  Adjusted weights are simply the initial weights times the frame 

size divided by the sum of the initial weights: 

 

              
          

∑     
 
   

 

 

Where the frame size is the total resource size included in the sample frame (the total length of 

stream sites in the frame if sampling a linear stream network);      are the initial weights for 

each site i, and n is the number of sites sampled. 

 

This document is geared toward using the analysis functions.  As such, for the remainder of the 

document it will be assumed that the user has data available from a properly conducted 

probability sample, and that the adjusted weights (or initial weights if no oversampling was 

utilized) are correct.  It is critical, however, that this is indeed the case in practice.  Incorrect 

weights will lead to incorrect inferences regarding the population. 

 

Once a GRTS sample (or any other probability sample) has been completed, the primary 

spsurvey functions used to analyze the data and draw inference about the population, or 

subgroups within the populations, are cat.analysis and cont.analysis.  The function cat.analysis 

is used to analyze categorical variables, while cont.analysis is used to analyze continuous 

variables, as well as non-continuous ordinal variables.  (A non-continuous ordinal variable is a 

response variable that can take on only a discrete set of quantitative values, either infinitely or 

finitely.  For example, the number of fish observable in a stream segment is infinitely discreet, in 

the set {0, 1, 2, 3, …}.  While this isn’t a true continuous response variable, it would 

nevertheless be analyzed using cont.analysis. 

 

There are numerous additional functions available in spsurvey, some of which are used to 

generate plots and conduct tests for differences among subpopulations, and will be discussed 

below.  Other (in fact most) functions in spsurvey are most often called from other functions, 

rather than directly by the user.  These will not be discussed in this guide. 

 

 

5. Data Needed for spsurvey Analysis Functions 

 

As with any “off the shelf” R function, the spsurvey functions require specific inputs provided in 

specific formats.  In general, data collected during sampling is available in a database or 

spreadsheet in a form not directly usable as an input to spsurvey functions.  The user will need to 

prepare the external data in a manner that it can be read into R, then, within R, the user must 

manipulate the data in order to create input data that can be passed into the spsurvey functions.  

There are many variations on the way this can be done.  Expert R users may wish to import data 
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into R in a “raw” form and perform data manipulations within R, while other users may choose 

to do a majority of data preparation in an external program, such as Excel, and import data into R 

that requires a minimum amount of R manipulation.  This user’s guide will present only one 

example, where a “.csv” file of raw data is created, read into R, and data is manipulated in R and 

passed into the spsurvey functions.  It is hoped that this process will be useful to users of ISEMP 

/ CHaMP data.  But keep in mind this is by no means the only process that could be followed. 

 

The following describes the inputs that are required to be part of the data passed to the spsurvey 

analysis tools, as well as a subset of the inputs likely to be applicable to ISEMP / CHaMP data 

users.  Note that the specific names of data columns is not yet critical. 

 

Note:  spsurvey tools require that only a single row of data exist for each site sampled.  This, of 

course, doesn’t preclude multiple measurements of a response variable at each site, it simply 

requires that the user choose to select, or aggregate data, into a single response.  For example, if 

the number of fish per meter at a site is measured five times, the user may wish to use the 

average of these five measurements, or perhaps the median, as the single response for fish per 

meter passed into the spsurvey arguments.  If time series data is available, the change in the 

response over time, or the slope of the response regressed on time, may be used as the a single 

response for each site passed into the spsurvey analysis functions.  Multiple observations per site 

may also have the advantage of reducing the measurement variability, which will be important if 

measurement noise is not small relative to the signal being measured. 

 

Required Data:   

The following data are required inputs to the spsurvey analysis tools, for any analysis.  The user 

should ensure that all required data are available prior to beginning the analysis: 

 

Site ID:  A unique identifier for each site sampled in the survey.  This can be a numeric or string 

id. 

 

X and Y Coordinates.  These are the coordinates of each site.  These can be in latitude / 

longitude initially, but will later need to be converted to Albers coordinates to avoid distortive 

affects in the spsurvey analysis.  For the examples provided in this document, we’ll start with 

latitude/longitude, and translate to Albers coordinates using spsurvey tools provided, in R. 

 

Weights: These are the final, adjusted (if necessary) sampling weights (i.e. inverse sampling 

probabilities) derived from the sample design.  Adjusted weights are necessary if there were sites 

not sampled due to access or other non-response issues, if over sampled data sites were used, etc.  

Getting the correct weights is critical in accurately analyzing the data.  Erroneous weights will 

lead to biased and potentially misleading results.  If there are any questions about the validity of 
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the weights, it is appropriate to revisit their calculation and/or seek assistance from a 

knowledgeable source before proceeding. 

 

Note that weights typically have units of measure associated with them.  For a linear resource 

such as a stream network, these units are units of length, such as km.  It is critical that the user 

know what the units on weight are, especially if estimates of response totals, such as number of 

fish in an entire stream network, are to be calculated.  It is recommended that the units on length 

be included in column names in any spreadsheet or database holding the raw data. 

 

Response Variable Data:   Any number of response variables may be included in the dataset, 

and analyzed concurrently.  Responses, in terms of spsurvey tools, are either categorical or 

continuous.   

 

Categorical responses are responses that can take on non-ordinal values such as “red, blue, or 

green”.  Habitat classification may be such a response, taking on values such as “forested, ranch 

land, clear cut forest, urban”.  The key feature of categorical responses is that they do not have 

an intrinsic ordering.  Note: merely assigning a number to a value (1=forested, 2=clear cut, 

3=ranch land, etc.) does not make a categorical into an ordinal response, as the order is not 

indicative of a change in the magnitude of a response.   

 

Continuous response variables are, traditionally, thought of as response variables that can take on 

an infinite number of values within a set.  For example, a weight of a fish can vary from near 

zero to some maximum possible value, and could theoretically take on any value within that 

range.  For spsurvey analysis, we may think of discreet, but ordinal responses, such as the 

number of fish counted (which can take on only zero or positive integer values) as “continuous”, 

as any ordinal response variables will be analyzed using the spsurvey function cont.analysis. 

 

 

Optional Data   

 

The following input data are not required for all spsurvey analysis, but may be needed to address 

specific user questions and output requirements. 

 

Stratification Levels 

During the sample design stage, strata may be identified over which the researcher may deem it 

advantageous to define differences in sampling probabilities.  In the data analysis phase, this 

variable probability is reflected in the design weights.  Therefore, in many cases it is unnecessary 

to explicitly define the strata during the analysis phase.  The user may in fact note that specifying 

the strata at the analysis phase usually appears to have no impact on the results.  Strata may be 
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included, however, if the user wishes to utilize the popsize argument and has total resource size 

information across stratum/subgroup levels [3].    

 

In general, the user will not specify strata at the analysis phase, even if stratification is used in 

the sampling design.  All information regarding strata is reflected in the adjusted weights.  (The 

spsurvey documentation is not entirely clear on why stratum may be an input, yet have no effect 

on the response.  In some versions of the code, the calculation of local variance estimates may 

have been adjusted somewhat based on user defined strata, while the version as of this writing 

does not.  In older versions, user defined strata may have had a small effect on results). 

 

 

Subgroup Levels 

 

Subgroups and Strata are terms sometimes used interchangeably by users; however, these are not 

the same: strata refer to groups made during the sample plan design phase, over which 

differential sampling probabilities are assigned.  Subgroups are defined at the data analysis 

phase, and merely describe the way or ways that the user wishes to “cut” or “roll up” the data.   

Of course, the user may wish to define subgroups by the same categories as strata were defined, 

though this is not necessary.  The user may define any subgroups at the analysis stage, regardless 

of whether such subgroups were considered at the design stage, or if any design stratification was 

used with respect to subgroups. 

 

Multiple subgroup classifications may be used during an analysis.  For example, a user may wish 

to analyze a response variable by stream Strahler order, and also by another response such as a 

management reporting unit category.   

 

Resource Size (Total Stream Length) for Sample Frame and by Subgroup 

 

In analysis of a categorical response, a typical result would estimate the proportion of the 

population of subgroup in each category.  For example, the results may estimate that sites within 

a sample frame are 35% forested, 25% clear cut, 38% ranch lands, and 2% urban lands (and of 

course with each estimate there would be reported a standard error, confidence intervals, and/or 

some level of uncertainty).  However, instead of percentages, the user may wish to report 

estimates and uncertainties in kilometers of stream length instead of percent of stream length 

estimated in each category.  To do this, information on the total stream length included in the 

sample frame must is required.  If the user wishes to provide this information by subgroup, then 

the total stream length by subgroup must be provided.   
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For CHaMP / ISEMP data, this information is available via the sampling frame used to create the 

sample design.  This may be in the form of a spreadsheet, or a shape files from which the GRTS 

sample plans were created.   

 

 

Measurement Variance  

 

The measurement noise of an individual metric may be important to consider, unless the 

measurement noise is small relative to the signal being measured.  Measurement variance can be 

included in the spsurvey analysis for each continuous response measured.  It is assumed in the 

analysis that the measurement variance is uniform across sites for a given metric, though in 

reality this may be a poor assumption.  If the user is unsure if measurement noise ought to be 

included in the analysis, or if site to site variation in measurement noise is excessive, it is 

recommended that a statistician be consulted. 

 

 

6. Example spsurvey Analysis: Lemhi Watershed 2010 Data 

 

An analysis example for both categorical and continuous responses is presented here to illustrate 

the details of using the spsurvey analysis tools in R.  This example may serve as a template for 

users constructing their own analysis scripts.  The full R-script used in this analysis is provided 

in the appendix.  2010 data, from the Lemhi watershed, is used for this example.  Valley class 

will be considered as a categorical response variable, while Chinook and Steelhead (O. Mykiss) 

abundance will be analyzed as continuous response variables.  Results will be considered at two 

spatial scales: the watershed level, and reporting units within the watershed. 

 

Figure 1 shows the first 18 rows of a dataset generated from a GRTS sample on the Lemhi 

watershed in 2010.    

Figure 1. Example Data from Lemhi Watershed 
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Additional details on the variables are as follows: 

 

 Siteid: unique identifier for each site 

 CHaMPstudyframe: yes/no variable indicating whether row should be included in the 

analysis 

 SpatialStrata: Stratification group used in design, reflected in differing sample 

probabilities and resulting weights 

 ReportingUnit: subgrouping over which to analyze data 

 SSFrameWeight: adjusted sample weights 

 lat: latitude 

 long: longitude 

 ValleyClass: categorical response indicating valley sediment transport classification of 

site 

 ChinPerMeter: Number of Chinook salmon per meter measured at site 

 OmykissPerMeter: Number of Steelhead per meter measured at site 

 

 

Note that, in the dataset, there are multiple rows for the same siteid.  The spsurvey tools require 

that only one row per unique site be used.  This will be dealt with in R for this example. 

 

For this example, the excel file shown above is saved as a .csv file, which can be easily read 

using standard R functions. 

 

The following steps illustrate how to create an R script to analyze and create some standard 

output plots for the dataset and analysis goals described above. 

 

Step 1. Create an R Script 

 

Start R, and change the working directory to the directory in which the data file is stored, by 

clicking on the R console window, then selecting “file”, “change dir…”, and then navigating to 

the folder in whish the data file exists. 

 

Next, begin a new R script by selecting “file”, “new script”.  A blank script will appear.  You can 

add comments to the script by preceding them with a “#” symbol.  Add some basic info at the top 

of the script, ssuch as: 

 

# Example of analysis of GRTS data using spsurvey 

# functions "cat.analysis", "cont.analysis" 
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# September 2012 

 

Then save the script under a filename of your choice, using the “file” – “save as” options.  

Continue to save often as you build your script! 

 

Step 2. Load the spsurvey library 

 

Begin the script by loading the spsurvey functions into memory library (assuming the spsurvey 

package is installed.  If not, see section 4) by entering: 

 

# load spsurvey function 

library(spsurvey) 

 

 

Note that in R, the “#” symbol is used to enter comments into the code.  Anything entered to the 

right of the “#” symbol is a comment and will be ignored by the actual code. 

 

Step 3. Read Data from the data file 

 

Next, read the data from the .csv file using the “read.csv” command, into a data frame called 

“data”: 

 

 data <- read.csv("Lemhi2010Data.csv", 1) 

 

Recall that this data set has, for some sites listed, more than one row of data.  For the spsurvey 

analysis functions, we must have only one row of data per site.  The following line of code 

removes all but the first row listed for each site (though the user, in reality, may wish to use other 

strategies to choose the best row to keep, or to aggregate multiple rows of data into a single row): 

 

# Remove duplicate site entries - keep only the first site listed.   

      data <- data[!duplicated(data$siteid), ] 

 

The coordinates in the in raw data are in latitude/longitude format.  The spsurvey functions 

require a projected coordinates system such as albers coordinates.  Included in the spsurvey 

package is the “geodablers” function that will convert latitude/longitude coordinates into albers 

coordinates.  Code to do this, and add the updated x and y coordinates to the “data” data frame as 

vectors “xalbers” and “yalbers” is shown below: 

 

 latlon <- geodalbers(data$lon, data$lat) 
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 data$xalbers <- latlon$xcoord 

 data$yalbers <- latlon$ycoord 

 

 

Step 4 (Optional).  Overlay Sample Points on Shapefile 

 

If a shapefile covering the sampling frame is present, it is quite straightforward to produce a plot 

of the stream network, with sampled sites overlaid on the sampling frame.  This provides a quick 

check of data integrity.  For this example, we will color code the shapefile and sample points by 

reporting unit and spatial strata, respectively.  The user could easily specify colors by the 

response level or magnitude, or any number of other ways, to visually present data. 

 

First, read in the shapefile using the “read.shape” function (which is contained with the spsurvey 

package).  In this case, the shape file is titled “LemhiFrameFinal_20120527.shp”.  Note that 

there are typically several files, under the same name but with different extensions (.shp, .dbf 

.prg) that should all be located in the same folder.  For the read.shape function, specifiy the 

“.shp” file, as shown below: 

 

# Read shapefile for Lemhi watershed 

 shape = read.shape(filename =  

     "LemhiFrameFinal/LemhiFrameFinal_20120527.shp") 

 

Now the shape file information is stored in the data frame “shape”.  The plot command 

recognizes shapefiles, and can be used to directly plot the shapefile, as in: 

 

plot(shape) 

 

However, it may be useful to specify unique colors for some subgroup.  For this example, we’ll 

specify a line color for each reporting unit, using the “match” function: 

 

# Set color levels by reporting unit 

 WSlevels = c("Hayden Creek", "Lower Lemhi River", "Upper Lemhi River") 

 WScolors = match(Rep.unit, WSlevels) 

 

Next, we’ll check the maximum and minimum x and y locations, so we can adjust the area of 

plotting (leaving room for  a legend): 

 

# See what the max and min values are 

 max(data$xalbers) 

 min(data$xalbers) 
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After some trial and error on nice looking plot boundaries, we’ll set the x plot boundaries using 

the xlim argument.  The following plots the shapefile using a unique color for each reporting 

unit: 

 

# plot the shapefile 

 plot(shape, col=1+WScolors, xlim=c(-1400000,-1300000)) 

 

The “1+” was added simply to change the colors to avoid using black (col=1) as one of the 

colors, purely a matter of preference.   

 

Next, a legend can be added: 

 

# make a legend 

 legendtext = WSlevels 

 legend("topright", legendtext, col=(1+seq(1:length(WSlevels))),  

             ncol=, title="Reporting Unit",lty=1) 

 

Next, we’ll plot the individual points included in the sample, overlaid on the map of the 

watershed.  We’ll specify a unique color and symbol for each category in “SpatialStrata”. 

 

# For the individual sample points, set Color by Spatial Strata, 

# and add these points to the plot. 

 strat_levels = levels(data$SpatialStrata) 

 strat_levels 

 colors=match(data$SpatialStrata, strat_levels)+1 

 symbol = colors+10       

 

# Add the points 

 points(latlon, col=colors,  

              pch=symbol, main = "Spatial Location of Sites, by SpatialStrata", 

              xlab="longitude", ylab="latitude") 

 

# specify legend colors 

      legend_col = seq(1:length(strat_levels))+1 

 legend_symbol = legend_col+10 

 

# specify legend text 

 legendtext = strat_levels 

 legend("bottomrig", legendtext, col=legend_col, pch=legend_symbol, 
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            , ncol=1, title="Spatial Strata") 

 

The resulting plot is shown by Figure 2.  Note that there are two points in the Hayden creek 

spatial strata that are disconnected from the stream network.  This is indicative of an issue where 

the shape file does not match, exactly, the sampling frame from which the data were taken.  Thus 

total stream length should not be calculated from this shapefile, but rather a corrected shapefile 

or from another, correct source.  Plots such as these can be quite useful in identifying such 

inconsistencies. 

 

Another useful plot for data exploration is a 

boxplot.  An example boxplot, showing 

steelhead density, in fish/meter, by reporting 

unit, is shown by Figure 3.  Code to create 

this boxplot is as follows: 

 

 boxplot(data$OmykissPerMeter ~ 

data$SpatialStrata, main= 

   "Steelhead Per Meter, by 

SpatialStrata", las=2, col=5) 

 

Additional exploratory plots, including 

histograms, are created by the example code 

provided as an appendix to this document. 

 

 

Step 5. Build Data Frames used by 

cat.analysis and cont.analysis. 

 

The function cat.analysis requires, as input, 

the following data frames: sites, subpop, 

design, and data.cat.  While not required for 

all analyses, we’ll also create the “popsize” 

data frame.  Specific items included in each 

data frame will be shown below.  When 

constructing these data frames, it’s good 

practice to give them unique names (different 

from “site”, “subpop”, etc) and then pass them 

into the functions as will be shown below. 

 

Figure 3.  Steelhead per Meter, by Reporting Unit

 

Figure 2.  Lemhi Watershed Shapefile, with Sample 

Points
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The function cont.analysis requires the same sets of inputs as cat.analysis, except that “data.cat” 

dataframe will be replaced by “data.cont”. 

 

Sites Data Frame 

 

The sites data frame contains a vector called “siteID” with a single unique ID for each site 

included in the survey (i.e. one site ID for each row of data).  It also must contain a vector called 

“Use” which lists which rows of data are to be included in the analysis.  For this example, we’ll 

use the column “CHaMPstudyframe” to indicate whether to include a given row.  Note that we 

need to turn this into a vector Boolean TRUE/FALSE values in the code below, by using the 

logical “==” (double equal sign) test.  We’ll call this data frame “my.sites”. 

 

 

# Create the sites data frame, which identifies sites to use in the analysis 

 my.sites <- data.frame(siteID=data$siteid, Use=(data$CHaMPstudyframe=='Yes'))      

 

 

Design Data Frame 

 

Next, we’ll create the design data frame.  Like all data frames used, siteID must be included.  

The next component is “wgt”, which is used to specify the weights, obtained from the GRTS 

design, adjusted for any updates to the sampling frame after using the adjwgt function.  Entering 

proper weights is crucial, as the sampling design probabilities, stratification levels, etc. are 

reflected in the design weights and are not otherwise specified in the analysis phase.  Also 

required in the design data frame are vectors specifying x coordinates and y-coordinates, on an 

appropriate (projected) scale, such that x and y distances are in equivalent projected units. 

 

Recall that weights have units of length when analyzing a linear resource.  It may be necessary to 

ensure that units on weights and a response (say fish per meter) are consistent.  In this case, the 

weights were provided in km, and a response of interest is fish per meter, so we need to 

proactively adjust units be converting weights to meters.  (Note this is only required if we are to 

sum a response, such as fish/meter, over the entire length of the sample frame, or some sub-

grouping of the total, as will be demonstrated below). 

 

# Input the adjusted weights  

 data$final.wgt <- data$SSFrameWeight*1000 # convert to meters 

 

An effective and easy check on the weights can be done by summing all weights together.  The 

sum of all weights should be equal to the total resource length.  For a stream network, the sum of 
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weights should equal the total length of all streams included in the sampling frame.  The sum 

function can be used as follows: 

 

sum(data$final.wgt) 

 

The output from above can be compared to the known total stream length from the sampling 

frame, or from that calculated from the shapefile.  In the shapefile associated with this stream 

network, the vector “FrameLengt” contained stream segment lengths for all sites included in the 

sampling frame. 

 

sum(shape$FrameLengt) 

 

If the outputs from the above two summations aren’t equal (or at least quite close), the user 

should double check for errors in the weights or sample frames.  (Note, in this example, the 

included shape file is NOT the shapefile from which the GRTS sample was generated, so there is 

a small differences between the sums listed above (as well as the inconsistency noted in Figure 

2).  We’ll ignore this inconsistency for the remainder of this example, assuming the weights are 

correct and the shape file is not an accurate account of the sampling frame used).  In practice all 

such assumptions should be verified. 

 

At this point we can create a design data frame, which we’ll call “my.design”, as follows: 

 

# Create the design data frame, which identifies the stratum code, weight, 

# x-coordinate, and y-coordinate for each site ID 

 my.design <- data.frame(siteID=data$siteid,wgt=data$final.wgt, 

                         xcoord=data$xalbers, ycoord=data$yalbers) 

 

 

 

Subpop Data Frame 

The subpop data frame specifies the level(s) to which the user would like to aggregate the 

results.  In many cases, the user may wish to simultaneously aggregate to multiple levels.  If the 

subpop argument is omitted, the analysis will simply cover all sites included, with no 

subgroupings. 

 

In this example, we wish to analyze the data over all sites, while also looking at results by 

reporting unit.  To do this simultaneously, we will a) created a dummy vector of subgroups 

called “All.Sites” which has only one level: the level of “All.Sites” for each row of data is the 

same, “All.Sites”.  Treating this as a subgroup is analogous to not using subgroups, as all data is 
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in the same subgroup.  At the same time, we’ll specify that reporting unit is to be used as an 

additional level of subgroup. 

 

The code below illustrates the subpop data frame for this example.  Note the “rep” command is 

used to create a vector called “All.Sites” where each element is simply “All.Sites”.  “nr” is a 

variable containing the number of rows in the data set. 

 

# Create the subpop data frame, which defines populations and subpopulations for 

# which estimates are desired 

 my.subpop <- data.frame("siteID"=data$siteid, 

   All.Sites= rep("All.Sites",nr), 

                     ReportingUnit = data$ReportingUnit) 

 

data.cat and/or data.cont data frames 

The data frame used to pass the respons data into  cat.analysis and cont.analysis are 

straightforward to create.   Both will contain a vector of site ID’s (as do the design, subpop, and 

sites data frames), plus a vector for each response variable.  Data frames for the categorical 

analysis variable “ValleyClass” and for the  categorical response variables “OmykissPerMeter” 

and “ChinPerMeter” are shown below: 

              

# Now make the "data" data frame for our categorical variable 

 my.cat.data <- data.frame(siteID=data$siteid, ValleyClass=data$ValleyClass) 

 

# Now make the "data" data frame for our continuous variable 

 my.cont.data <- data.frame(siteID=data$siteid, 

       OmykissPerMeter=data$OmykissPerMeter, ChinPerMeter = data$ChinPerMeter) 

 

 

 

Popsize Argument 

The popsize argument is used to specify the total resource size, by subgroup.  For a stream 

network, the resource size is the total stream length, in the same units as the weights in the 

design data frame.  This is an optional input, and it used when the user wants to convert a 

proportion estimate to an estimate in units of the resource size.  In this example, we’ll consider 

valley class as a categorical response.  Default results will include estimates of the percent of 

each valley class category in each subgroup specified.  If, however, the user would like estimates 

for the total length of stream in each valley class category, by subgroup, the popsize argument 

can be used to specify the total stream lengths, by subgroup, such that the total of each valley 

class category is forced to sum to the total stream length. 
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The structure used to enter the popsize argument can be troublesome, and may require some trail 

and error on the part of the user.  For this example, we’re specifying two “levels” of subgroups.  

The “top” level includes all data points and is specified by the “All.Sites” label in the subgroups 

data frame; while the next level divides this into three subgroups, by reporting unit, as described 

above.  The popsize argument must specify popsize for each level of subgroup(s) specified.  In 

this case, we must specify popsize for “All.Sites”, as well as for each level of the subgroup 

variable.  Subgroup names within the popsize argument must match the subgroups names 

exactly.  The structure for the popsize argument is a list (a data structure within R that allows for 

named elements) of elements at each level of subgroup.  If there are multiple levels of subgroup, 

then the lower levels are specified as lists within the broader list.   

 

Note: If stratification is used and the user wishes to specify popsize by stratum/subgroup levels, 

the argument takes on an additional level of complexity.  Often, though stratification is used in 

the design, it may not be necessary to track strata at the analysis stage, as the weights take into 

account the effects of design stratification.  However, it may be useful when aggregating by 

subgroup, in some cases [3].  

 

Popsize is illustrated by the example below.  From the sampling frame, the total resource length 

was calculated to be 349830 meters.  We wish to estimate total resource lengths, by valley class, 

for the entire watershed.  In addition, we wish to estimate resource length, by valley class, within 

each reporting unit.  Thus included in the main list is “Reporting Unit”, which is itself a list 

specifying the total stream length for each reporting unit within the broader watershed.  Note that 

the lengths within the “ReportingUnit” list should add up to the length specified in the 

“All.Sites” group. 

 

 

# Create the popsize data frame, based on the calculation done earlier. 

# The numbers represent the total stream length by subgroups 

 my.popsize = list(All.Sites = 349830, 

     ReportingUnit=list("Hayden Creek"=64558,  

                      "Lower Lemhi"= 121266,       

                    "Upper Lemhi" = 163153)) 

 

 

Step 6. Running the cat.analysis function 

 

Now that we’ve prepared the input data frames and other arguments, it is straightforward to run 

the spsurvey function cat.analysis and cont.analysis.  The cat.analysis function is shown below.  

Note that it is not necessary to used the form “site=my.sites, subpop = my.subpop”, etc.  The 

user may simply arrange the arguments in the correct order.  However, including the structure as 
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shown ensures that the correct arguments are passed correctly to the function, regardless of the 

order in which they are passed.  This practice can make debugging much easier. 

 

# Now, let's use "cat.analysis" to analyze the categorical data 

 Results.Cat <- cat.analysis(site=my.sites,  

  subpop = my.subpop, design = my.design,  

  data.cat = my.cat.data, popsize=my.popsize) 

 

“Results.Cat” is now a data frame containing the results of the cat.analysis.  The “names” 

function can be used to view the names of the results contained in “Results.Cat”.  Descriptions of 

each item in the output are listed below: 

 

names(Results.Cat) 

 

Descriptions of each element of the cat.analysis output are as follows: 

 

 Type: indicates which subgroup category of results is listed in a given row; in this case it 

will be either “All.Sites”, or “ReportingUnit”.   

 Subpopulation: lists which category of “All.Site” or “ReportingUnit” is listed.   

 Category: indicates for which level of the categorical variable results are shown  

 NResp: indicates the number of response in a given subgroup / level of categorical 

variable. 

 Esimate.P: The estimated percentage of stream length, across all sites in the sample 

frame / subgroup combination, of the given level of the subgroup. 

 StdError.P, LCB95Pct.P, UCB95Pct.P: standard error and corresponding upper and 

lower 95% confidence limits for the percentage estimates in Estimate.P. 

 Estimate.U:  The estimate of total stream length (in the units used by popsize), across all 

sites in the sample frame / subgroup combination.  This is only accurate if the popsize 

argument is used.  The “U” refers to “units” (meters, in this case). 

 StdError.U, LCB95Pct.U, UCB95Pct.U: standard error and corresponding upper and 

lower 95% confidence limits for the percentage estimates in Estimate.U. 

To see the actual results, simply type the name of the output data frame “Results.Cat”.  To 

write the data to a .csv file, use the command “write.csv”, as shown below, along with a table 

of results (formatting added in excel). 

Figure 4: Output from names(Results.Cat): 

 

[1] "Type" "Subpopulation" "Indicator"     "Category"      "NResp"         "Estimate.P"    "StdError.P"    

 [8] "LCB95Pct.P"    "UCB95Pct.P"    "Estimate.U"    "StdError.U"    "LCB95Pct.U"    "UCB95Pct.U"    
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Results.Cat 

# Write results to a file 

 write.csv(Results.Cat, "Results.Cat.csv") 

 

 

 

The above table indicates, for example, that over all sites, an estimates 50.47% of stream length 

is valley class “Depositional” (95% confidence bound 35.1% to 65.8%).  Instead of %, we can 

look at the “.U” columns to see that this corresponds to 176562 meters of Depositional valley 

class (95% confidence interval 122897 m to 230226 m).  Considering only sites in the Lower 

Lemhi Valley class, we see, for example, that there is an estimated 49219 meters of valley class 

“Transport” (95% confidence interval 17224 meters to 81213 meters).  Note that for the Hayden 

Creek reporting unit, we have only two responses, both in the Depositional valley class.  With 

only two responses, estimates and confidence bounds have little meaning. 

 

Step 7. Running the cont.analysis function, and Estimating Total Population Abundances 

 

Running the cont.analysis function is nearly identical to running the cat.analysis function, 

except that we now pass the continuous data frame “my.cont.data” in “data.cont”, instead of the 

categorical data passed into cat.analysis.  All other data inputs can be used for both functions 

without alteration.   

 

In addition, for this example we will include the optional “total=TRUE” argument.  This 

argument allows, in this case, for an estimate of the total Steelhead and Chinook abundance, by 

Subgroups.  The estimate for total population is calculated as follows: 

 

Figure 5. Results from “cat.analysis” function 
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       ∑      

 

   

 

 

Where n is the number of samples included in the data set, Yi is the ith observation of the 

response, and Wi is the weight of the ith observation.  It is important when using the “total = 

TRUE” argument to check (and re-check) the units on your response and your weights.  In this 

example, the units for “OmykissPerMeter” are number of Steelhead per meter, and the weights 

are in meters, thus the units on “Total” are number of Steelhead.  Similarly, for “ChinPerMeter”, 

the units on “Total” are number of Chinook.   

 

NOTE:  If the units of the response variable are, say “number of Steelhead per site”, but the 

weights are in “meters”, the “total=TRUE” argument will not return meaningful information.   

 

The following shows the call for the cont.analysis function for this example: 

 

# Analyze Continuous Data usisng "cont.analysis" function        

 Results <- cont.analysis(sites=my.sites, subpop = my.subpop, 

                           design = my.design, data.cont = my.cont.data,  

                           total=TRUE, 

   popsize=my.popsize) 

 

The output for this example is stored in the data frame “Results”.  Typing “names(Results)” 

shows that there are four items within this dataframe:  CDF, Pct, CDF.D, and Pct.D.  CDF 

contains results for the cumulative distribution function estimates for all response variables, by 

subgroup(s).   

 

Pct contains estimates for various percentiles of the cumulative distribution function for each 

variable analyzed, as well as estimates of the mean and variance of the distributions.  The default 

percentiles are: 5, 10, 25, 50, 75, 90, and 95.  These defaults can be user defined if desired (see 

step 11).  In addition to these estimates, confidence intervals for each estimates are provided, as 

well as standard errors for the estimates of the mean and variance parameters. 

 

If the “total=TRUE” argument was passed to cont.analysis, then the Pct data frame will also 

contain an estimate, standard error, and confidence interval for the sum total of a resource (in this 

case, number of fish) for each subgroup specified. 

 

The CDF data frame contains results formatted so as to enable plotting of the estimated CDF 

curve and corresponding confidence intervals, as will be seen blow. 
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CDF.D and Pct.D are NULL (empty) for this example.  These return information only if 

measurement variance is considered in the analysis.  An example of this will be shown in 

sections to follow. 

 

First, we’ll examine the results in Pct.  Results can be displayed to the screen by entering 

Results$Pct. Alternately, for easier viewing, write results to a .csv file with the command: 

 

#Write results to file(s)  

write.csv(Results$Pct, "ResultsPCT.csv") 

 

A table of results contained in the PCT data frame is shown by Figures 6a  (for Steelhead) and 6b 

(for Chinook). 

 

 

 

From the above table, we see, for example, that the total Steelhead (O.Mykiss) population over 

all sites is 87297 fish, with a 95% confidence interval of 5879 to 115817 fish.  The mean density 

of steelhead per meter in the watershed is .362 steelhead per meter (95% confidence interval .28 

to .44 fish per meter).  The median density (50
th
 percentile) is .301 fish per meter. 

 

 

Figure 6a.  Steelhead Abundance Results for All sites from “ResultsPCT.csv” (formatted) 
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From the above table we see, for example, that the estimated total Chinook population in the 

Lower Lemhi for is 3150 fish, with a 95% confidence interval of (1363, 5822).   

To obtain a table showing only total abundance, for both steelhead and Chinook salmon, the 

following code can be used: 

# Write results to file(s) 

  write.csv(Results$Pct[Results$Pct$Statistic=="Total",], "ResultsPCT.Total.csv") 

 

Total abundance estimates are no longer in units of “fish per meter”, but rather simply number of 

fish.  Figure 7 shows total fish abundance estimates for steelhead and Chinook Salmon, over the 

entire watershed and by reporting unit, as well as 95% confidence limits. 

 

Figure 6b.  Chinook Abundance Results for the Lemhi Reporting Unit from “ResultsPCT.csv” (formatted) 

 

Figure 7: Total Fish Abudance Estiamtes from cont.analysis functions 
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From Figure 7 we can see the estimates for total number of steeleahd and Chinook, for each 

reporting unit as well as over all sites, and corresponding standard errors and confidence 

intervals. 

 

Step 8. Making CDF Plots. 

 

There are two options available for making CDF plots showing the distribution estimates 

resulting from cont.analysis.  You can use the spsurvey function cont.cdfplot, which will 

automatically generate cdf plots from the CDF data frame output from cont.analysis.  It will plot 

estimates for the cdf and corresponding confidence limited, for all continuous response variables 

included in the analysis, at all subgroup levels analyzed in cont.analysis.   This is easy to do, as 

is shown below: 

 

# Use function "cont.cdfplot" 

 cont.cdfplot("Example_CDF.pdf", Results$CDF) 

 

The code above will create an output file called “Example_CDF.pdf.   

 

Alternately, you can access the results in the “CDF” data frame directly to create your own CDF 

plots.  The advantage of doing this is greater flexibility in customizing the graph(s) to your 

liking.  The following code is used to create the CDF plot shown by Figure 7 for the distribution 

of steelhead abundance in the upper Lemhi reporting unit: 

 

# Select Subpopulation for plotting cdf plots to screen 

 Plot.Subpop= Results$CDF[Results$CDF$Subpopulation=="Upper Lemhi",] 

# Manually make some plots 

 title = Plot.Subpop$Subpopulation[1] 

 metric = Plot.Subpop$Indicator[1] 

  

# Generate a CDF Plot for Estimate.P 

 with(Plot.Subpop, {  

 plot(Value[Indicator=="OmykissPerMeter"],Estimate.P[Indicator== 

"OmykissPerMeter"], 

  type="l", main = paste(title, "O.Mykiss Per Meter CDF Estimate"), 

 xlab="Total Abundance", ylab="Cumulative Pct") 

 

 # Add confidence bounds  

 lines(Value[Indicator=="OmykissPerMeter"],LCB95Pct.P[Indicator== 

"OmykissPerMeter"], 

   col="red") 
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 lines(Value[Indicator=="OmykissPerMeter"],UCB95Pct.P[Indicator== 

"OmykissPerMeter"], 

   col="red") 

 }) 

 

# add a legend 

 legend.text = c("CDF Estimate", "95% Confidence Limits") 

 legend("bottomright", legend.text,col = c("black", "red"), pch=19) 

 

 

The CDF plot in Figure 7 is exactly 

equivalent to the corresponding plot created 

by the function cont.cdfplot function. The 

only difference is in coloring, but the user is 

free to change title, axis labels, plot height 

and width, etc., using any of the standard R 

graphing tools. 

 

Note that when interpreting the confidence 

limits on CDF plots, the vertical distance 

between confidence limits represents the 

confidence interval, rather than the 

horizontal distance.   Visually, CDF 

confidence limits can be misleading in cases 

where the vertical width is large, but the 

horizontal limits are narrow.   An example 

of this can be seen in figure 8, which shows 

the CDF estimate and 95% confidence 

interval for steelhead in the Hayden creek 

reporting unit.  Because the sample size in this reporting unit is quite small, the 95% confidence 

interval is quite wide.  Note that the wide confidence limits are seen only when examining the 

vertical distance between the estimates and the confidence limits.  Examining the horizontal 

distance between lines, one could easily make the incorrect conclusion that the confidence limits 

are narrow and that we have high precision in our estimates.  This is NOT correct! 

 

 

 

 

 

 

Figure 7.  CDF Plot for Steelhead density (fish/m) for 

the upper Lemhi Reporting Unit 
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Step 9 (Optional). Testing for Differences 

Between Sub-Populations 

 

In some cases, the user may wish to test for 

statistical evidence of differences among 

subpopulations.  The spsurvey function 

cont.cdftest can be used to test for 

differences in distribution between 

subgroups in a population.   Note that, as a 

test for differences in distribution, this is a 

more general test than, for example, a test 

for differences in means.  The function 

cont.cdftest uses a WALD test for 

differences between populations [1].  

 

In this example, we will test for differences 

in the density of fish across the three 

reporting units, for both Steelhead and 

Chinook salmon.  Code to conduct this test, 

as well as write the output to the screen and 

to a filed called “CDF_Tests_Example.csv” file, is as follows: 

 

# Conduct a WALD test for differences among subpopulations 

  CDF_Tests <- cont.cdftest(sites=my.sites, design= my.design, 

         data.cont= my.cont.data, 

        subpop = data.frame("SiteID"=data$siteid, 

"ReportingUnit"=data$ReportingUnit)) 

     print(CDF_Tests) 

     write.csv(CDF_Tests, "CDF_Tests_Example.csv") 

 

Note that we didn’t use our original “mySubpop” data frame for cont.cdftest.  This is because 

“my.subpop” contained two levels of subgroups:  “All.data” and “ReportingUnit”.  “All.data” 

was a single subgroup, for which a test for differences among subgroups would be meaningless.  

Thus the subpop data frame was re-created for cont.cdftest, to include only the ReportingUnit.  

Also note that, in this case, the subpop data frame was constructed directly within the function 

call.  This can be done with any functions, though it is often easier to construct the data frames 

external to the function call, in order to keep function calls short and simple. 

 

The results from this function are shown in Figure 9: 

Figure 8.  CDF Plot for Steelhead density (fish/m) for the 

Hayden Creek Reporting Unit 
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From the above results, we see that there is significant evidence (p-value < .05) of differences in 

the distribution of steelhead per meter (O.mykiss per meter) between the Hayden Creek and 

Upper Lemhi reporting units.  There is also evidence of differences in Chinook salmon densities 

between Hayden Creek and the Lower Lemhi, and Hayden Creek and the Upper Lemhi reporting 

units.  Keep in mind that, in cases where p-values do not provide evidence of differences, that 

does NOT necessarily imply that the distributions are the same.  Rather, this suggests that one of 

the following is true:  the distributions are nearly the same OR the differences in distributions are 

too small to be detected with the sample size.  It is a common, but serious mistake to interpret a 

p-value > .05 as evidence of “no differences”. 

 

 

Step 10 (Optional). Including Measurement Noise in the Analysis 

 

In many cases, measurement error (a.k.a. measurement “noise”) may be large relative to the 

signal being measured.  Spsurvey analysis tools provide a mechanism to include measurement 

variance in the analysis in order to provide deconvoluted cdf estimates.  Deconvoluted, in this 

case, means that the variance of the population will be estimated separately from the 

measurement variance.  Note that when measurement variance is not included in the analysis, all 

variance is assumed to be due to actual variation in the response being measured. 

 

Note also that measurement variance will not (in spsurvey) affect the estimated distributions, but 

rather it will affect the uncertainty of those estimates, as indicated by standard errors, confidence 

limits on cdf plots, etc.  Including measurement variance will generally increase the uncertainty 

of the response estimates.  This “correction” to the results is indicative of the fact that, due to 

uncertainty in the data, the user actually has less information about the response than he/she 

would if the response variable were measured without uncertainty. 

 

Figure 9.  Test for Differences in Distribution of Fish Density, by Reporting Unit 
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It is not always obvious when it is necessary to include measurement variance in an analysis.  As 

a rule of thumb, it may be appropriate to ignore measurement variance if the magnitude of the 

measurement variance is much less (i.e. and order of magnitude) below the variance of the signal 

being measured.  However, assuming measurement variances are known, there is little downside 

to including them, with the exception of adding some complexity to the analysis.  The upside of 

including them is a more accurate description of uncertainty in population distribution estimates. 

 

One potential issue when including measurement error is the need for measurement variance to 

be distributed equally across all sites.  For CHaMP / ISEMP data, this may be problematic for at 

least two reasons:  not all data is obtained via the same measurement techniques (i.e. fish density 

may be estimates by mark-recapture techniques, electrofishing, etc); secondly, measurement 

variance may increase as the signal being measured increases (i.e. the measurement variance for 

a site with 10 fish per meter may be higher than for a site with 1 fish per meter).  The spsurvey 

functions do not enable specification of measurement uncertainty on a per site level, but rather 

assume that the measurement variance is constant over all sites for a given metric. 

 

Finally, note that high measurement variances on a site level do not necessarily doom the 

analysis to poor estimates of populations aggregated to higher spatial scales.  The more sites 

aggregated together in an analysis, the greater the precision of total population estimates relative 

to the size of the signal being measured.   

 

To include measurement variance in R, we need to first define a vector of measurement variance 

(although missing values are allowed for responses for which measurement error is unknown).  

Please note that the function requires variance estimates, NOT standard deviation estimates.   

(Variance equals the standard deviation squared).  This can be somewhat confusing in spsurvey 

due to the fact that the argument name for measurement variance is “sigma” rather than 

something like “sigma_squared” , a more typical nomenclature for a variance component.  (Note: 

this has been confirmed with the authors of spsurvey).   

 

For this example, the measurement variance was defined, and the continuous variable analysis 

re-run, as follows: 

 

Measurement.variance = c("OmykissPerMeter" = .25, "ChinPerMeter" = .2) 

Results.D <- cont.analysis(sites=my.sites, subpop = my.subpop, 

                            design = my.design, data.cont = my.cont.data,  

                            total=TRUE, 

               popsize=my.popsize, 

   sigma= Measurement.variance) 
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The data frame Results.D now includes the same data frames as were produced when using 

cont.analysis without measurement error. However, now the data.frames CDF.D and Pct.D are 

included.  These data frames contain the deconvoluted results.  These data frames now contain 

more accurate descriptions of uncertainty in results, and should be used in lieu of the CDF and 

Pct dataframe.  CDF plots using the corrected (deconvoluted) estimates can be obtained as 

follows: 

 

#Create a PDF file containing plots of the CDF estimates--the function generates the  

#cdf plots from the data in Results$CDF.D 

 cont.cdfplot("Results.D.CDF.D.pdf", Results.D$CDF.D) 

 

Note that the results data frames in CDF and Pct are identical to those produced when not 

including measurement variance in the analysis.  The results in the dataframes CDF.D and Pct.D 

have the modified estimates.   

 

Step 11: Other Options for Analysis 

 

Additional options exist for using the spsurvey analysis function cat.analysis and cont.analysis.  

Some of those that may be of interest to CHaMP / ISEMP users include: 

 

 conf: Change the Confidence Level from the default 95% 

 pct.val: change the values at which the percentiles are estimates (from the default {5, 10, 

… , 90, 95}) 

 var.sigma: Include variance of the measurement variance estimate in the analysis. 

 

Details on using these are available in the spsurvey documentation, or by typing “?cat.analysis” 

or “?cont.analysis” in R. 

 

 

7. Summary 

 

The spsurvey functions cat.analysis and cont.analysis, and related functions, provide tools for 

analysis of probability survey data, including the CHaMP / ISEMP datasets obtained via GRTS 

sampling.  This document provides an additional resource, geared specifically toward CHaMP / 

ISEMP scientists, to aid in the analysis and interpretation of these datasets, using the spsurvey 

analysis tools.   

 

While this document provides a basic introduction and a framework that may be applicable to 

most analyses, this is by no means an exhaustive review of the spsurvey tools, nor analysis 
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methods for probability based designs in general.  Users are encouraged to seek additional 

resources and/or seek the assistance of the author and other statisticians as questions and issues 

arise.  It is hoped that such requests may contribute to updates and improvements in future 

revisions of this document.   
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9. Appendix: R-code Used For Example Analysis in Section 6 

 
# Example of analysis of GRTS data using spsurvey 

# functions "cat.analysis", "cont.analysis" 

# Matt Nahorniak, August 2012 

# 

# To be used in conjunction with data file "Lemhi2010Data.csv" 

 

 

# Load Required Libraries 

 library(spsurvey) 

 

# Read the data file   

 data <- read.csv("Lemhi2010Data.csv", 1)    

 

# Remove duplicate site entries - keep only the first site listed.  This 

# is for example only... user needs to determine what to do with duplicate 

# measurements and if/how to use them.  cont.analysis and cat.analysis take 

# only one set of measurements per site as inputs. 

      data <- data[!duplicated(data$siteid), ] 

 

# Take a look at the first few rows of data 

 head(data) 

 

# create Albers xy coords for use in analysis 

# spsurvey functioins need lat/lon in this format 

# and add the albers x and y coords to the "data" dataframe 

 latlon <- geodalbers(data$lon, data$lat) 

 data$xalbers <- latlon$xcoord 

 data$yalbers <- latlon$ycoord  

 

 

################################################## 

# Make Some simple Exploratory Plots 

 

# Read shapefile for Lemhi watershed 

 shape = read.shape(filename =  

     "LemhiFrameFinal/LemhiFrameFinal_20120527.shp") 

 

# Do a quick check on the total frame length in the shape file 

sum(shape$FrameLengt)  

 

# Create Rep.unit in a way that I think matches the data, 

# so I can get total frame lengths 
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 Rep.unit= shape$HU_10_NAME 

 levels(Rep.unit) 

 Rep.unit[Rep.unit=="Hawley Creek"] = "Upper Lemhi River" 

 Rep.unit[Rep.unit=="Middle Lemhi River"] = "Lower Lemhi River" 

 Rep.unit[Rep.unit=="Timber Creek"] = "Upper Lemhi River" 

 Rep.unit[Rep.unit=="Texas Creek"] = "Upper Lemhi River"  

 Rep.unit[Rep.unit=="Eighteenmile Creek"] = "Upper Lemhi River" 

 

 

####################################### 

# Do some preliminary Graphical Analysis 

# Make a plot using the shapefile, and overlay sample 

# points on top. 

 

# Set color levels by reporting unit 

 WSlevels = c("Hayden Creek", "Lower Lemhi River", "Upper Lemhi River") 

 WScolors = match(Rep.unit, WSlevels) 

 

# See what the max and min values are 

 max(data$xalbers) 

 min(data$xalbers) 

 

# plot the shapefile 

 plot(shape, col=1+WScolors, xlim=c(-1400000,-1300000)) 

 

# make a legend 

 legendtext = WSlevels 

 legend("topright", legendtext, col=(1+seq(1:length(WSlevels))),  

             ncol=1, title="Reporting Unit",lty=1) 

 

 

# For the individual sample points, set Color by Spatial Strata, 

# and add these points to the plot. 

 strat_levels = levels(data$SpatialStrata) 

 strat_levels 

 colors=match(data$SpatialStrata, strat_levels)+1 

      symbol = colors+10       

      legend_col = seq(1:length(strat_levels))+1 

 legend_symbol = legend_col+10 

 points(latlon, col=colors,  

              pch=symbol, main = "Spatial Location of Sites, by SpatialStrata", 

              xlab="longitude", ylab="latitude") 

 legendtext = strat_levels 

 legend("bottomrig", legendtext, col=legend_col, pch=legend_symbol, 

            , ncol=1, title="Spatial Strata") 

 

 

#################################### 
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# Make some other plots 

 

 hist(data$OmykissPerMeter, main="O.MykissPerMeter", xlab="O.MykissPerMeter", col=5) 

 

 boxplot(data$OmykissPerMeter ~ data$SpatialStrata, main= 

   "Steelhead Per Meter, by SpatialStrata", las=2, col=5) 

 

 boxplot(data$OmykissPerMeter ~ data$ReportingUnit, main= 

   "Steelhead Per Meter by Reporting Unit", las=1, col=5,  

         ylab="Steelhead per Meter") 

 

 

 hist(data$ChinPerMeter, main="Chinook Per Meter", xlab="O.MykissPerMeter", col=5) 

 

 boxplot(data$ChinPerMeter ~ data$SpatialStrata, main= 

   "Chinook Per Meter, by SpatialStrata", las=2, col=5) 

 

 boxplot(data$ChinPerMeter ~ data$ReportingUnit, main= 

   "Chinook Per Meter by Reporting Unit", las=1, col=5) 

 

 

 

################################################### 

# 

# Start the analysis with spsurvey functions here! 

# 

################################################### 

 

# Start Buidling dataframes for cont.analsys and cat.analysis 

# First time through, we'll analyze as though sample plan was 

# unstratified 

 

 

# get number of rows 

 nr <- nrow(data) 

 

# Input the adjusted weights  

 data$final.wgt <- data$SSFrameWeight*1000 # convert to meters 

 sum(data$final.wgt) 

 

# Create the sites data frame, which identifies sites to use in the analysis 

 my.sites <- data.frame(siteID=data$siteid, Use=( 

 data$CHaMPstudyframe=='Yes'))      

 

# Create the subpop data frame, which defines populations and subpopulations for 

# which estimates are desired 

 

 my.subpop <- data.frame("siteID"=data$siteid, 

      All.Sites= rep("All.Sites",nr), 
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                          ReportingUnit = data$ReportingUnit) 

 

 

# Create the popsize data frame, based on the calculation done earlier. 

# The numbers represent the total stream length by subgroups 

 

# missing length belongs to Hayden Creek / Hayden 

 sum(data$final.wgt) 

 sum(shape$FrameLengt) 

 sum(data$final.wgt)-sum(shape$FrameLengt) 

 24417+40141.38 

 

 my.popsize = list(All.Sites = 349830, 

    ReportingUnit=list( 

   "Hayden Creek"=64558,  

                  "Lower Lemhi"= 121266,       

                  "Upper Lemhi" = 163153)) 

 

 

# Create the design data frame, which identifies the stratum code, weight, 

# x-coordinate, and y-coordinate for each site ID 

 my.design <- data.frame(siteID=data$siteid, 

                        wgt=data$final.wgt, 

                         xcoord=data$xalbers, 

                         ycoord=data$yalbers) 

 

                  

 

# Now make the "data" data frame for our categorical variable 

 my.cat.data <- data.frame(siteID=data$siteid, ValleyClass=data$ValleyClass) 

 

# Now make the "data" data frame for our continuous variable 

 my.cont.data <- data.frame(siteID=data$siteid, 

                          OmykissPerMeter=data$OmykissPerMeter, 

                               ChinPerMeter=data$ChinPerMeter) 

 

 

 

#################################### 

# Now, let's use "cat.analysis" to analyze the categorical data 

 Results.Cat <- cat.analysis(site=my.sites,  

  subpop = my.subpop, design = my.design,  

  data.cat = my.cat.data, popsize=my.popsize) 

 

 

# And see the results 

 names(Results.Cat) 

# Print all results 

 print(Results.Cat) 
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# Write results to a file 

 write.csv(Results.Cat, "Results.Cat.csv") 

 

# Print results in percentiles 

 print(Results.Cat[,c(1:9)]) 

 

# Print results scaled to total lengths 

 print(Results.Cat[,c(1:4,10:13)]) 

 

 

 

############################################################### 

# Analyze Continuous Data usisng "cont.analysis" function 

               

 Results <- cont.analysis(sites=my.sites, subpop = my.subpop, 

                           design = my.design, data.cont = my.cont.data,  

                           total=TRUE, 

       popsize=my.popsize) 

 

 

# And see the results 

 Results$CDF 

 Results$Pct 

 

 

# Write results to file(s) 

 write.csv(Results$Pct, "ResultsPCT.csv") 

 write.csv(Results$Pct[Results$Pct$Statistic=="Total",], "ResultsPCT.Total.csv") 

 

 

# print some results to the screen 

 names(Results) 

 with(Results$CDF, data.frame(Type,  

       Subpopulation, Indicator, NResp, Estimate.P,LCB95Pct.P, UCB95Pct.P, Estimate.U, 

LCB95Pct.U, UCB95Pct.U)) 

 

####################################################################### 

# Make a CDF plot for a subpopulation of choice 

# for steelhead abundance. 

 

# Select Subpopulation for plotting cdf plots to screen 

# (Pick one of the four options below) 

 Plot.Subpop= Results$CDF[Results$CDF$Subpopulation=="All.Sites",] 

 Plot.Subpop= Results$CDF[Results$CDF$Subpopulation=="Lower Lemhi",] 

 Plot.Subpop= Results$CDF[Results$CDF$Subpopulation=="Upper Lemhi",] 

 Plot.Subpop= Results$CDF[Results$CDF$Subpopulation=="Hayden Creek",] 
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# Manually make some plots 

 head(Plot.Subpop) 

 title = Plot.Subpop$Subpopulation[1] 

 metric = Plot.Subpop$Indicator[1] 

  

 

# Generate a CDF Plot for Estimate.P 

 with(Plot.Subpop, {  

 plot(Value[Indicator=="OmykissPerMeter"],Estimate.P[Indicator=="OmykissPerMeter"], 

  type="l", main = paste(title, "O.Mykiss Per Meter CDF Estimate"), 

 xlab="Total Abundance", ylab="Cumulative Pct") 

 

 lines(Value[Indicator=="OmykissPerMeter"],LCB95Pct.P[Indicator=="OmykissPerMeter"], 

   col="red") 

 lines(Value[Indicator=="OmykissPerMeter"],UCB95Pct.P[Indicator=="OmykissPerMeter"], 

   col="red") 

 }) 

 

# add a legend 

 legend.text = c("CDF Estimate", "95% Confidence Limits") 

 legend("bottomright", legend.text,col = c("black", "red"), pch=19) 

############################################################################## 

 

 

# Use function "cont.cdfplot" 

# Create a PDF file containing plots of the CDF estimates--the function  

# generates the cdf plots from the data in Janish_CDF_Estimates$CDF 

 cont.cdfplot("Example_Omykiss_CDF.pdf", Results$CDF) 

 

 

# Conduct a WALD test for differences among subpopulations 

 CDF_Tests <- cont.cdftest(sites=my.sites, design= my.design, 

         data.cont= my.cont.data, 

        subpop = data.frame("SiteID"=data$siteid, "ReportingUnit"=data$ReportingUnit)) 

 

# Print results and write results to a file 

    print(CDF_Tests) 

    write.csv(CDF_Tests, "CDF_Tests_Example.csv") 

 

 

############################################################### 

# Analyze again, but include measurement variance 

# Note: These measurement variances are "made up" for the sake 

# of this example 

 

 Measurement.variance = c("OmykissPerMeter" = .3, "ChinPerMeter" = .3) 

 Results.D <- cont.analysis(sites=my.sites, subpop = my.subpop, 

                           design = my.design, data.cont = my.cont.data,  



39 
 

                           total=TRUE, 

       popsize=my.popsize, 

       sigma= Measurement.variance) 

 

 names(Results.D$CDF) 

 Results.D$CDF[Results.D$CDF$Subpopulation=="All.Sites",1:9][1:10,] 

 Results.D$CDF.D[Results.D$CDF.D$Subpopulation=="All.Sites",1:9][1:10,] 

 

 

# Use function "cont.cdfplot" 

#Create a PDF file containing plots of the CDF estimates--the function generates the cdf plots from the data in 

Janish_CDF_Estimates$CDF 

 cont.cdfplot("Results.D.CDF.pdf", Results.D$CDF) 

 cont.cdfplot("Results.D.CDF.D.pdf", Results.D$CDF.D) 

 

 

 


