An Introduction to CHaMP Sampling and Data Analysis

Presenter: Matt Nahorniak

An Introduction to CHaMP Sampling and Data Analysis

- Introduction
- Review of sampling basics
 - Stratified sampling
- Design Based Analysis
- Model Based Analysis
 - Incorporation of sample design in model based analysis
- Example Analyses in R
- Working with CHaMP Statisticians
 - Helping us help you

CHaMP

Introduction

An Introduction to CHaMP Sampling and Analysis CHaMP data analysis

Today's key message:

Sampling design needs to be taken into account during any and all analyses of CHaMP data

Questions for the audience:

- What watershed(s) are of interest to you?
- What are you hoping to estimate?
- What questions are you hoping to answer?
- How else to you hope to use the data?

CHaMP Spatial levels of Interest:

CHaMP

- Site (Reach) Level
 - Level of data Collection (CHaMP Sampling)
- Management
 - Reach through CRB
- Fish Biology
 - Geomorphic unit (individual fish)
 - Segment-Network Populations of fish
- Data Visualization (Continuous spatial estimates)
 - Network-Basin

BPA has indicated that we need to be able ask (and answer) questions across spatial scales ranging from channel units to the entire Upper Columbia basin.

Analysis of sampled data: a simple example

An Introduction to CHaMP Sampling and Analysis

I measured 20 sites from a population, as follows:

Question: What is sample average?

Question: What is estimated population average?

CHaMP

Sample Data				
Site #	Value			
Am	3			
Fa	6			
Fb	6			
Ak	3			
Fd	6			
Ef	6			
Ch	3			
Bf	3			
Aa	3			
Ab	3			
Dh	3			
Bn	3			
FI	6			
Em	3			
Dc	6			
Cd	3			
Ej	6			
Fm	6			
Fh	6			
Ea	6			

Population Map. Bold Boxes indicate sampled sites

Aa	Ва	Ca	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Bc	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Be	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
AI	BI	Cl	DI	El	Fl
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

Sample Data			
Site #	Value		
Am	3		
Fa	6		
Fb	6		
Ak	3		
Fd	6		
Ef	6		
Ch	3		
Bf	3		
Aa	3		
Ab	3		
Dh	3		
Bn	3		
Fl	6		
Em	3		
Dc	6		
Cd	3		
Ej	6		
Fm	6		
Fh	6		
Ea	6		

ISEM

-

CHaMP

Value = 3 Value = 6

Aa	Ва	Са	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Bc	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Ве	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
Al	Bl	Cl	DI	El	Fl
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

Sample Data	
Site #	Value
Am	3
Fa	6
Fb	6
Ak	3
Fd	6
Ef	6
Ch	3
Bf	3
Aa	3
Ab	3
Dh	3
Bn	3
FI	6
Em	3
Dc	6
Cd	3
Ej	6
Fm	6
Fh	6
Ea	6

BONNEVILLE

СНаМР

ISEMP

Stratum A

59 Units 10 Selected At Random

Stratum B

31 Units

10 Selected At Random

Aa	Ва	Ca	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Bc	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Ве	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
Al	Bl	Cl	DI	El	FI
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

Sample Data				
Site #	Value			
Am	3			
Fa	6			
Fb	6			
Ak	3			
Fd	6			
Ef	6			
Ch	3			
Bf	3			
Aa	3			
Ab	3			
Dh	3			
Bn	3			
FI	6			
Em	3			
Dc	6			
Cd	3			
Ej	6			
Fm	6			
Fh	6			
Ea	6			

SONNEVILLI

Stratum A

59 Units 10 Selected At Random

Stratum B

31 Units

10 Selected At Random

Aa	Ва	Са	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Bc	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Be	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
Al	Bl	Cl	DI	El	Fİ
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

Sample Data Site # Value Stratum Weight 3 5.9 Am А 6 3.1 Fa В Fb 6 В 3.1 5.9 Ak 3 А 6 3.1 Fd В Ef 6 3.1 В 3 5.9 Ch А Bf 3 5.9 А Aa 3 А 5.9 3 5.9 Ab А Dh 3 А 5.9 3 5.9 Bn А FI 6 В 3.1 5.9 Em 3 А 6 3.1 Dc В 5.9 Cd 3 А 6 3.1 Ej В Fm 6 3.1 В Fh 6 В 3.1 6 3.1 Ea В Average 4.50 Weighted Average 4.03

BONNEVILLE

ISEMP

An Introduction to CHaMP Sampling and Analysis

• Question: why do we sample?

Sampling, when done well, enables us to make inference to an entire population, while only measuring directly a subset of that population

Effective sampling of only a tiny fraction of a population can often lead to precise inference regarding a broad population

• Question: What are the tradeoffs to consider between intensive reach level sampling (as in CHaMP) and doing a census (i.e. measure the entire stream network, but with far less information content per length of stream)?

Sampling Terminology

An introduction to CHaMP Sampling and Analysis

- Target population
 - The resource about which estimates are needed
 - Defined conceptually using written text
 - Must define what are the elements of the target population.

• Question: What is our target population in CHaMP?

• Question: What are the elements of our population?

Sampling Frame

- A physical representation of the target population
 - It consists of sample units that are potential members of the sample
 - Extent (size) of the frame is obtained by summation
 - Sample Frames almost always are not exact representations of the target population
 - Sample Frame may not include some Target Population elements: Undercoverage
 - Sample Frame may contain non-target elements, e.g., mis-identified sample units: Overcoverage

- Sample
 - The subset of the Sample Frame sample units selected for sampling
 - Probability survey designs used to select the subset
 - One design GRTS
 - May include stratification, unequal probability selection, panels for surveys over time, etc.

- Sampled Population
 - A conceptual population that is a subset of intersection the Target Population and the Sample Frame
 - excludes portion of the Target Population within the Sample Frame that could not be sampled (conceptually) due to access problems, lost samples, or other reasons a sample could not be collected
 - It doesn't include part of the Sample Frame that is determined to not be elements of the Target Population (Non-Target)

Sampling: Terminology

Types of Sample Designs

- Simple Random Sampling
 - Every element in a sample frame has equal probability of being selected in the sample
- Stratified random Sampling
 - Sampling frame is divided into strata
 - Each stratum is mutually exclusive
 - Random sampling takes place within stratum
- Cluster Sampling
 - Sample is divided into natural groups or "clusters"
 - SRS sample used to pick subset of clusters
 - Subset of elements selected from within each cluster
- Other...

CHaMP

ONNEVILL.

Type of Sample Designs

 Question: CHaMP selected a subset of watersheds within the Columbia, then a subset of sites within selected watersheds. Is this cluster sampling?

GRTS Sampling

Question: CHaMP uses GRTS Sampling.

What is "GRTS"?

GRTS Sampling

 GRTS Sampling = "Generalized Random Tessellation Stratified" sampling

http://www.epa.gov/nheerl/arm/documents/presents/grts_ss.pdf

Generalized Random Tessellation Stratified sampling (GRTS)

- GRTS is an alternative to random sampling
 - Can be applied to other sampling designs (i.e. uniform probability sampling, stratified sampling, cluster sampling, etc.)
- Achieves a more spatially balanced sample
 - Enables more efficient sampling

GRTS Sampling

- GRTS sampling is considerably more spatially balanced the a true random sample
- Benefit:
 - Spatial balance enables in many cases more efficient estimates of natural resource response metrics
 - Sometimes sites adjacent to each other are highly correlated –
 i.e. the 2nd site doesn't provide much new information not
 contained by the first
 - "More efficient" = higher precision for the same sample size

• What is a stratum?

- A group of sites for which, within the stratum, there is equal probability of each site being selected in the sample
 - Strata do not need to be spatially continuous
 - Strata are mutually exclusive
 - All sites must be in a stratum

Stratum A

59 Units 10 Selected At Random

Stratum B

31 Units 10 Selected At Random

	-				
Aa	Ва	Ca	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Bc	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Be	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
Al	Bl	Cl	DI	El	Fİ
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

- Question: I want to know the average value for 4 groups of sites as outlined.
- Are these groups of sites "strata"?

Aa	Ва	Ca	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Вс	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Be	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
Al	BI	Cl	DI	El	FI
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

• Question: Why does CHaMP use stratified sampling?

- Why stratified sampling?
 - Desire to ensure at least a minimum sample size in different strata
 - Some strata may be deemed more important than others, and we may choose to sample more densely in those strata
 - Some strata may naturally have higher variance than others. More efficient estimation is possible if sample size is greater in high variability strata than low variability strata
 - Belief that within strata variation is less than strata-strata variation
 - Other?

Stratified Sampling – CHaMP Strata

Estimated Mean Fast Turbulent Frequency by Valley Class x Ownership Type

СНаМР

I S E M P

- Basic steps:
 - Define strata
 - Choose sample size by strata
 - Randomly select sites within each strata
 - Apply GRTS if desired
 - Collect Data
 - Calculate design weights
 - Analyze data taking design weights into account
 - Design or Model based analysis depending on question(s) of interest

Stratified Sampling

- Defining strata requires balancing competing objectives!
- Question: What are some of CHaMP competing objectives?

Stratified Sampling – Define Strata

- Typically CHaMP stratifies by Valley Class x Ownership Type
 - Sometimes other strata are defined

Wenatchee Watershed:							
Total Stream Length (km) by Stratum							
	Public Private						
Source	32.85 12.						
Transport	6.67	12.87					
Depositional	109.64 98.38						
Little Wenatchee	11.15						

Q: How do we make good choices for strata?

Stratified Sampling – Define Strata

- Strata Considerations
 - Important subpopulations may be give their own stratum
 - Make Stratum-Stratum variability high, within stratum variability low
 - For efficient estimation

Stratified Sampling – Choose sample size by strata

- Sample size per stratum depends on:
 - Total available resources for sampling
 - Relative importance of strata
 - Expected variation by strata
 - Other?

Stratified Sampling – Choose sample size by strata

• Question: Is it important to give larger strata proportionally more samples?

Wenatchee Watershed:						
Total Stream Length (km) by Stratum						
	Public Private					
Source	32.85	12.80				
Transport	6.67 12.87					
Depositional	109.64 98.38					
Little Wenatchee	11.15					

Stratified Sampling – Collect Data

• See "CHaMP Camp"

• Design weight = Extent_{stratum} / N_{stratum}

- A site's design weight represents the total length of stream that it "represents" in the analysis
- The more sites in a stratum, the lower the design weight.
- Question: What is the weight of each of the selected sites in the example to the right?

CHaMP

Stratum A			Stratum B			
Extent = 59 Units			Extent = 31 Units			
10 Selected	10 Selected At Random			d At Rando	m	
Wgt = 5.9/1	.0 = 5.9 Uni	ts	Wgt = 31/1	0 = 3.1 Uni	ts	
Aa	Ва	Ca	Da	Ea	Fa	
Ab	Bb	Cb	Db	Eb	Fb	
Ac	Bc	Сс	Dc	Ec	Fc	
Ad	Bd	Cd	Dd	Ed	Fd	
Ae	Be	Ce	De	Ee	Fe	
Af	Bf	Cf	Df	Ef	Ff	
Ag	Bg	Cg	Dg	Eg	Fg	
Ah	Bh	Ch	Dh	Eh	Fh	
Ai	Bi	Ci	Di	Ei	Fi	
Aj	Bj	Cj	Dj	Ej	Fj	
Ak	Bk	Ck	Dk	Ek	Fk	
AI	Bl	Cl	DI	El	FI	
Am	Bm	Cm	Dm	Em	Fm	
An	Bn	Cn	Dn	En	Fn	
Ao	Во	Со	Do	Eo	Fo	

• Design weight = Extent_{stratum} / N_{stratum}

In CHaMP, strata extents are measured in distance (km) of a linear stream network.

Design weights have units! (km of stream distance)

CHaMP

- Question
 - What if, during site evaluations, we find that a site is "non-target"?

Aa	Ва	Са	Da	Ea	Fa
Ab	Bb	Cb	Db	Eb	Fb
Ac	Bc	Сс	Dc	Ec	Fc
Ad	Bd	Cd	Dd	Ed	Fd
Ae	Ве	Ce	De	Ee	Fe
Af	Bf	Cf	Df	Ef	Ff
Ag	Bg	Cg	Dg	Eg	Fg
Ah	Bh	Ch	Dh	Eh	Fh
Ai	Bi	Ci	Di	Ei	Fi
Aj	Bj	Cj	Dj	Ej	Fj
Ak	Bk	Ck	Dk	Ek	Fk
Al	Bl	Cl	DI	El	Fİ
Am	Bm	Cm	Dm	Em	Fm
An	Bn	Cn	Dn	En	Fn
Ao	Во	Со	Do	Eo	Fo

BONNEVILLE

Answer: We adjust the frame to remove entire portion "represented" by non-target site.

Stratum A			Stratum B				
Extent = 59	Units		Extent = 31 Units				
10 Selected	10 Selected At Random			10 Selected At Random			
Wgt = 5.9/1	L0 = 5.9 Uni	ts	Wgt = 31/1	0 = 3.1 Uni	ts		
Aa	Ва	Ca	Da	Ea	Fa		
Ab	Bb	Cb	Db	Eb	Fb		
Ac	Bc	Сс	Dc	Ec	Fc		
Ad	Bd	Cd	Dd	Ed	Fd		
Ae	Be	Ce	De	Ee	Fe		
Af	Bf	Cf	Df	Ef	Ff		
Ag	Bg	Cg	Dg	Eg	Fg		
Ah	Bh	Ch	Dh	Eh	Fh		
Ai	Bi	Ci	Di	Ei	Fi		
Aj	Bj	Cj	Dj	Ej	Fj		
Ak	Bk	Ck	Dk	Ek	Fk		
Al	BI	Cl	DI	El	FI		
Am	Bm	Cm	Dm	Em	Fm		
An	Bn	Cn	Dn	En	Fn		
Ao	Во	Со	Do	Eo	Fo		

Stratum A Stratum B Extent = 59 Units Extent = 27.9 Units 10 Selected At Random 9 Selected At Random Wgt = 5.9/10 = 5.9 Units Wgt = 27.9/9 = 3.1 Units Aa Ba Ca Da Fa Ab Bb Cb Db Fb Ac Bc Cc Dc Fc Ad Bd Cd Dd Ed Fd Ae Be Ce De Ee Fe Af Bf Cf Df Ef Ff Cg Dg Fg Ag Bg Eg Ah Ch Dh Fh Fh Bh Ci Ei Fi Ai Bi Di Ej Ai Bj Ci Di Fj Ak Bk Ck Dk Ek Fk BI CL DI EL FI. AI Am Bm Cm Dm Em Fm Fn An Bn Cn Dn En Ao Co Do Eo Fo Bo

ISEMP

- Question
 - What if, during analysis, we have an "NA" for a given metric?

Stratum A			Stratum B			
Extent = 59	Units		Extent = 31 Units			
10 Selected At Random			10 Selected	d At Rando	m	
Wgt = 5.9/1	.0 = 5.9 Uni	ts	Wgt = 31/1	0 = 3.1 Uni	ts	
			1			
Aa	Ва	Ca	Da	Ea	Fa	
Ab	Bb	Cb	Db	Eb	Fb	
Ac	Вс	Сс	Dc		Fc	
Ad	Bd	Cd	Dd	Ed	Fd	
Ae	Be	Ce	De	Ee	Fe	
Af	Bf	Cf	Df	Ef	Ff	
Ag	Bg	Cg	Dg	Eg	Fg	
Ah	Bh	Ch	Dh	Eh	Fh	
Ai	Bi	Ci	Di	Ei	Fi	
Aj	Bj	Cj	Dj	Ej	Fj	
Ak	Bk	Ck	Dk	Ek	Fk	
Al	Bl	Cl	DI	El	Fİ	
Am	Bm	Cm	Dm	Em	Fm	
An	Bn	Cn	Dn	En	Fn	
Ao	Во	Со	Do	Eo	Fo	

ISEMP CHaMP

Answer: The frame doesn't change. Assuming "missing at random within stratum" we re-calculate stratum sample weights.

Stratum	A		Stratum B				Stratum
Extent =	= 59 Units		Extent = 31	L Units			Extent =
10 Selec	10 Selected At Random			d At Rando	m		10 Selec
Wgt = 5.	.9/10 = 5.9 Uni	its	Wgt = 31/1	0 = 3.1 Uni	its		Wgt = 5.
						_	
	_						
Aa	Ва	Ca	Da	<u> </u>	Fa		Aa
Ab	Bb	Cb	Db	Eb	Fb		Ab
Ac	Bc	Cc	Dc	Ec	Fc		Ac
Ad	Bd	Cd	Dd	Ed	Fd		Ad
Ae	Ве	Ce	De	Ee	Fe		Ae
Af	Bf	Cf	Df	Ef	Ff		Af
Ag	Bg	Cg	Dg	Eg	Fg		Ag
Ah	Bh	Ch	Dh	Eh	Fh		Ah
Ai	Bi	Ci	Di	Ei	Fi		Ai
Aj	Bj	Cj	Dj	Ej	Fj		Aj
Ak	Bk	Ck	Dk	Ek	Fk		Ak
AI	BI	Cl	DI	El	FI		AI
Am	Bm	Cm	Dm	Em	Fm		Am
An	Bn	Cn	Dn	En	Fn		An
Ao	Во	Со	Do	Eo	Fo		Ao

Stratum A Extent = 59 Units 10 Selected At Random Wgt = 5.9/10 = 5.9 Units			Stratum B Extent = 31 Units 9 Selected At Random Wgt = 31/9 = 3.444 Units			
Aa	Ва	Ca	Da	Ea	Fa	
Ab	Bb	Cb	Db	Eb	Fb	
Ac	Bc	Сс	Dc	Ec	Fc	
Ad	Bd	Cd	Dd	Ed	Fd	
Ae	Be	Ce	De	Ee	Fe	
Af	Bf	Cf	Df	Ef	Ff	
Ag	Bg	Cg	Dg	Eg	Fg	
Ah	Bh	Ch	Dh	Eh	Fh	
Ai	Bi	Ci	Di	Ei	Fi	
Aj	Bj	Cj	Dj	Ej	Fj	
Ak	Bk	Ck	Dk	Ek	Fk	
AI	BI	Cl	DI	El	FI	
Am	Bm	Cm	Dm	Em	Fm	
An	Bn	Cn	Dn	En	Fn	
Ao	Во	Со	Do	Eo	Fo	

SEMI

• Why isn't there a big list of weights for every site?

- Note that, in the presence of N/A data, the same site may end up with different weights for different metrics
- We typically calculate weights during the analysis to avoid propagating erroneous weights

- Question
 - What if, after sampling design, John Q Manager decides to add site 86753, because it's an interesting site and besides, it right next to the road? I.e. it's an "opportunistic" site?

A). Site will represent only its own length. It will be it's own stratum.

- Question
 - What if a landowner decides, at that last minute, that you're not allowed to sample on her property?

Analysis of CHaMP Data

An introduction to CHaMP Sampling and Analysis

Stratified Sampling: Analyze Data

- Two basic types of statistical analyses:
 - Design based analysis
 - "Status and Trend" of a finite population
 - Model based analysis
 - Suitable for examination of complex relationships between variables
 - Higher risk: requires assumptions about model structure, distributions of residuals and other random effects, etc.

Design Based Inference

- Design based inference
 - Estimations of status or trend of an attribute of a finite population
 - We don't need to assume a distribution for response variable(s)
 - All stochastic elements are controlled by sample design
 - Population is fixed
 - Sample units are selected by probability sample
 - Statistical inference is based on sampling design

Design based inference: Horvitz-Thompson Estimator

Design based inference

- Question: Design based inference is effective for status and trend estimates. What do we mean by "Status and Trend"?
- Question: What does "GRTS Rollup" mean, exactly?

CHaMP default, annual "GRTS Rollups"

- What we estimate for every CHaMP metric:
 - Status, calculated separately for each year
 - Status Average of all three years
 - Responses are site level averages taken across all measured years*
 - Trend
 - Responses are slope of CHaMP metrics vs year by site*
- By Watershed for all Estimates
 - But we can easily modify this to rollup by any subgroup of your choice.

*Different sites have different number of measurements

Example status and trend results- table

Standard

Fast NonTurbulent Frequency Average of All Years

ISEMP

Lemhi

111

100

1.081

0.075

0.946

0.807 0.875116

0.934

1.228

-0.193

0.06

-0.311

-0.076

Example status and trend results: plots (Large Wood Frequency: status by watershed x year)

40

30

20

10

2011

Methow

Estimated mean Large Wood Frequency: Wetted (1/m), by watershed x year. Black lines indicates 95% confidence intervals for the mean.

Large Wood Frequency: Wetted

John Day

Lemhi

South Fork Salmon

Upper Grande Ronde

2014

2012

2013

Wenatchee

Yankee Fork

CHaMP

ISEMP

ONNEVILLI

Estimating status and trend ("GRTS Rollups")

• Question: can we do a GRTS rollup on CHaMP "products" such as HSI or NREI?

HSI Design Based Capacity Estimates "GRTS Rollups"

			Estimated Capacity			
Watershed	Species	Life Stage	(1000's)	LCB95Pct	UCB95Pct	Ν
Entiat	Chinook	Juvenile	1674.17	1385.37	1962.96	46
Entiat	Chinook	Spawner	14.19	12.28	16.09	44
Entiat	Steelhead	Juvenile	2680.86	2385.45	2976.28	46
Entiat	Steelhead	Spawner	90.91	78.61	103.21	44
Lemhi	Chinook	Juvenile	1416.95	961.78	1872.13	41
Lemhi	Chinook	Spawner	30.08	17.92	42.23	38
Lemhi	Steelhead	Juvenile	1319.13	925.19	1713.06	41
Lemhi	Steelhead	Spawner	42.14	25.19	59.10	38

R-Example: GRTS Rollup for Wetted Width : Depth Ratio, 2014

Introduction to CHaMP sampling and data analysis

Design based Inference

• Question: How do we estimate trend if the sampling design changes from year to year?

Break

Introduction to CHaMP sampling and data analysis

• Question: what is a "model" in statistics

 Question: Are there some questions for which "design based" analysis is not suitable?

How does measurement noise compare to other sources of variability (sitesite, watershed-watershed, year-year

What is the relationship between CHaMP metrics and observed site level juvenile steelhead abundance?

Can we relate CHaMP metrics to globally available attributes to predict CHaMP responses at unmeasured sites?

Model based inference

- Estimate parameters of an assumed statistical model describing the relationship attributes of a population
 - Regression is "model based inference"
- We need to make distributional assumptions about model errors

"All models are wrong. Some models are useful." - George E. P. Box

- Example of a statistical model:
 - $Y_i = \mu + \beta X_i + e_i$
 - e ~ IID Normal(0, σ²)
 - $\mu \rightarrow$ the intercept
 - $\beta \rightarrow$ slope or "coefficient"
 - $e_i \rightarrow$ random error
 - $Y_i \rightarrow$ The measured value at site i (i.e. our CHaMP Metric)
 - $X_i \rightarrow$ An explanatory variable assessed at site i
- μ and β are unknown, but fixed "truths"
- We cannot know we can only estimate, the fixed "true" values of μ and β

- What about the error? What is it, really?
 - e ~ IID Normal(0, σ²)
- What we call "random" may be described as error in the model arising from effects present in nature that our model fails to capture.
 - Mathematically, we model this as "random"

• Question: What does it mean for errors to be "independent, identically distributed"?

- What is this "IID"?
 - IID → Independent, identically distributed
 - Independence:
 - $P(A \cap B) = P(A)P(B)$ (Discreet) - or -
 - $F_{X,Y}(x,y) = F_X(x) F_Y(y)$ (Continuous)
 - All residuals belong to sample distribution
 - Example: e ~ IID Normal(0, σ^2)

• Q: What happens if we violate the I.I.D. assumption in statistical modeling?

• Question: What if the underlying drivers of error are not randomly distributed in a population?

- Example. Errors in habitat models are driven by geological features that are not quantified
 - Geological features are not randomly distributed throughout space
 - Sampling is not in proportion to the distribution of geological features

- How do we generate data from which we can be certain errors are IID?
 - Even if we don't know a-priori what might drive variation in residuals
 - We Randomize!

Randomization

- Simple random sampling:
 - Every individual in a population has equal chance of being selected in a sample
 - SRS is generally the most powerful tool for ensuring IID errors, which in turn yields unbiased parameter estimates
 - IID errors can be ensured by randomization during sample selection (or assignment to treatment groups in a designed experiment)

Simple Random Sample of 90 Units

Note: This is equivalent to a "stratified" sample with only 1 Strata

All weights are the same

Population						
Extent = 90	Units					
20 Selected	d At Rando	m				
Wgt = 90/20 = 4.5 Units						
Aa	Ва	Са	Da	Ea	Fa	
Ab	Bb	Cb	Db	Eb	Fb	
Ac	Bc	Сс	Dc	Ec	Fc	
Ad	Bd	Cd	Dd	Ed	Fd	
Ae	Be	Ce	De	Ee	Fe	
Af	Bf	Cf	Df	Ef	Ff	
Ag	Bg	Cg	Dg	Eg	Fg	
Ah	Bh	Ch	Dh	Eh	Fh	
Ai	Bi	Ci	Di	Ei	Fi	
Aj	Bj	Cj	Dj	Ej	Fj	
Ak	Bk	Ck	Dk	Ek	Fk	
AI	BI	Cl	DI	El	FI	
Am	Bm	Cm	Dm	Em	Fm	
An	Bn	Cn	Dn	En	Fn	
Ао	Во	Со	Do	Eo	Fo	

CHa

SEM

- Most statistical modeling tools assume that sampled elements from a population behave as if they're from a simple random sample (IID)
- CHaMP elements are not from a stratified sample and tend not to "behave" as they are. They are no, typically, IID.
 - sites in different strata have different probabilities of being included in the sample

Model based analysis

- Question: Are GRTS samples IID?
- No.
 - The sample inclusion probability for site X is less, given that a site near it has been sampled, than it is if that were not true.
- Isn't this a violation of the IID assumption?
 - Yes, but in this case, we don't really care.
 - A nice property of GRTS sampling is that, while technically this assumption is violated, the level of bias in parameter or standard error estimates is negligible

 Question: is there any "cost" associated with GRTS sampling over simple random sampling (within each strata)?

Model based analysis

- Costs of spatial balance:
 - Minor violation of independence assumption in model based analysis
 - This issue *we can generally ignore*
 - Reduced ability model spatial autocorrelation
 - Modeling spatial autocorrelation effectively requires some data points to be close together
 - Eliminates (or at least reduces) our ability to exploit spatial autocorrelation (i.e. kriging) in extrapolation models

GRTS Sampling

semi-variogram for Wetted Width To Depth Ratio Avg in the John Day

200 Example: Spatial autocorrelation not detected at the spatial 150 distances between sample semivariance points in the John Day 100 50 10000 20000 30000 400 range distance semivariance 300 200 ← Ideal Case 100 10 20 30 40 distance between points ISEMF CHaMP

Question: What happens if we ignore sampling inclusion probabilities in a model based analysis?

Model based inference with nonuniform probability sampling

• Techniques:

- Assume errors are independent of sample inclusion probabilities
 - Unfortunately, this is often done without acknowledgement or validation of assumption.
 - Often WRONG! (But often published)
- Include strata as explanatory variable
 - Including it's interactions with other explanatory variables if you can't otherwise rule out these interactions
 - Potential high cost in model complexity, df
- Model Assisted Regression
 - Applicable to many regression techniques
- Inverse Probability Bootstrapping
 - Applicable to any model based analysis

Model Assisted Regression

-lm:

, SEM, e...

- Tool in the R package "survey" enabling generalized linear modeling for conviex survey ata
- Function

 \bullet $\square \square$

Inputs

We'll do an example of "model assisted regression" in R. It's not much more difficult than "regular" regression

asea , s (regression trees, quantile

reg

Inverse Probability Bootstrapping (IPB)

- Re-sample from your sample in such a way that you transform it into (something like) a simple random sample!
 - Resample, with replacement, from original sample using inverse sample inclusion probabilities to transform dataset into uniform sample inclusion probability data
 - Model on IPB re-sample data
 - Iterate and make inference on average across all IPB iterations
- IPB enables use of generalized set of model based tools with complex survey data!

Inverse Probability Bootstrapping (IPB)

 Re-Sample, with replacement, using sample probabilities inversely proportional to initial sampling probabilities

Sample inclusion probabilities for simulated stratified sampling, stratified sampling plus IPB

Inverse Probability Bootstrapping (IPB)

Parameter estimates for regression of ln(steelhead density, fish/m²) on selected habitat parameters, for models that: ignore sample inclusion probabilities, and utilize IPB sampling to account for sample inclusion probabilities

	Stratified Sample Probabilities Ig Model Fitting	Inverse Pro Boots	% Error Due to Ignoring Weights			
Darameter		Std.		Std.		
	Est. Slope	Error	Est. Slope	Error		
Intercept	-1.60	0.027	-1.49	0.031	-7%	
Conductivity	0.13	0.030	0.23	0.023	46%	
Site Bankfull Area	-0.35	0.111	-0.68	0.137	49%	
Wetted Large Wood Volume By Site	-0.01	0.034	-0.13 0.038		89%	
Fast Non-Turbulent Area	-0.05	0.029	-0.09	0.038	39%	
Mean Bankfull Width Mean	0.19	0.106	0.52	0.138	64%	
Boulders	0.09	0.027	0.13	0.028	36%	
Fish Cover Composition LWD	-0.04	0.036	-0.08	0.028	44%	
Site Discharge	-0.06	0.031	-0.07	0.043	15%	
Fines <2mm	0.06	0.036	0.07	0.036	14%	

Inverse Probability Bootstrapping (IPB)

Mean and 95% confidence intervals for cross validation prediction error for regression of steelhead density on independent variables, and boosted regression tree analysis of steelhead density, as a percentage of the mean observed steelhead density at all sites. Models are built on data from stratified sample ignoring sample inclusion probabilities (Srat), and Inverse Probability Bootstrap samples (IPB)

Model based analyses (regression) example in R

An Introduction to CHaMP Sampling and Analysis

Model based analysis examples

- Variance decomposition
- Modeling HSI vs globally available attributes
- Examining effect of restoration

Model based example: CHaMP Variance Decomposition

- Objective:
 - Assess relative magnitude of sources of variation for key CHaMP metrics
 - Provide information to feed back into sampling design
 - Assess measurement noise relative to signal
- Methods:
 - Model key CHaMP metrics by Year, Valley Class, Watershed, and Measurement Noise
 - All modeled as random effects
 - Imer function in R
 - Use IPB Bootstrapping used to account for non-uniform sample inclusion probabilities

Model based example: CHaMP Variance Decomposition

log(Thalweg Site Length) log(Drift Biomass) log(Wetted Width Avg) Tog(Bankfull Volume) log(Wetted Volume) log(Substrate: D84) log(Substrate: D84) log(Wetted Depth SD) log(Large Wood Frequency: Bankfull) log(Wetted Width To Depth Ratio Avg) log(Large Wood Frequency: Wetted) log(Bankfull Depth Ratio Avg) log(Bankfull Depth Ratio Avg) log(Bankfull Depth Ratio Avg) log(Bankfull Width To Depth Ratio Avg) log(Bankfull Depth Ratio Avg) log(Bankfull Wetted Width CV) log(Substrate Est: Koulde) log(Substrate Est: Koulde) log(Substrate Est: Cobbies) log(Thalveg Depth Avg) log(Solar Access: Summer Avg) log(Solar Access: Summer Avg) log(Bankfull Width CV) log(Bankfull Width CV) log(Fast Turbulent Frequency) log(Fast Turbulent Frequency) log(Riparian Cover: Nore) log(Riparian Cover: Woody) log(Riparian Cover: Sig Tree) log(Riparian Cover: Inderstory) log(Riparian Cover: Inderstory) log(Bart Turbulent Volume) log(Substrate Est: Coarse and Fine Grave) log(Substrate Est: Coarse and Fine Grave) log(Percent Undercut by Area) log(Hercent Undercut by Area) log(Baarian Cover: Ground) log(Baarkfull Width To Depth Ratio CV) log(Substrate: Offo log(Substrate: D16) log(Fast Turbulent Percent) log(Fish Cover: Total) log(Sist Water Volume) log(Slow Water Frequency) log(Slow Water Frequency) log(Residual Pool Depth) log(Substrate Est: Sand and Fines) iog(Ripanian Cover: No Canopy) log(Fast NonTurbulent Frequency) log(Fast NonTurbulent Frequency) log(Siow Water Percent) log(Kakalnity) log(Fish Cover: Aguatic Vegetation) log(Fast NonTurbulent Percent) log(Substrate < 2mm) log(Fast NonTurbulent Volume) log(Conductivity) log(Substrate: Embeddedness SD) log(Substrate: Embeddedness Avg) log(Fish Cover: Artificial)

CHaMP

B.Q.

Model based regression example

 Regress HSI as a function of globally available attributes

Empirical Model for HSI Juvenile Steelhead Capacity

Empirical models relate globally available attributes to HSI and NREI estimates. Modeled Values are used to:

- Generate continuous estimates (maps)
- Estimate capacity in unmeasured regions
- Impute capacity to augment sparsely measured regions

CHaMP

log(1+measured)

Cross Validation: Measured vs Predicted for HSI.WUA.Juv.Steel.per.m as predicted from globally available attributes model

(Dot Size ~ Sample Weight)

HSI: Juvenile Steelhead Capacity per Meter

Model based regression example

- Regress Fast Turbulent Spacing as a function of globally available attributes
- Predict Fast Turbulent Spacing in Non-CHaMP Watersheds

Fast Turbulent Spacing: Measured vs Modeled

FastTurbulentSpacing by Watershed

FastTurbulentSpacing modeled prediction error by watershed

Continuous network estimation extrapolated to non-CHaMP watersheds

- Example: Fast Turbulent Spacing Estimates using "unified" model
 - Unbiased watershed-watershed
 - Less precise within each watershed than watershedspecific models
 - Useful (we hope) for extrapolation into unmeasured watersheds (for which CHaMP watersheds are "representative")

Model based regression example

- Regress Pool Frequency as a function of globally available attributes
- Augment limited CHaMP data with modeled predictions (imputation)

Example: Imputed and Model Based Continuous Estimation of Pool Frequency in the Little Wenatchee

Imputed Estimates

Estimated Mean (In 1 + Pool Frequency)

mean	2.50%	median	97.50%		
1.284	0.9443	1.286	1.619		

Model Based Continuous Estimates

Example: CHaMP Sampling and Choosing an analysis method

An introduction to CHaMP Sampling and Data Analysis

CHaMP Data Analysis

My watershed has treatment sites.

- How should I ensure I acquire data on treated sites, while maintaining a statistically valid (i.e. probabilistic) sampling strategy?
- What sort of analyses should I do?
 - Design based
 - Model based?

Tucannon restoration timeline (partial)

Site_ID	Stream	Sample	Sub_Treat	Sub_Loc	Sub_TrType	Treat2011	Treat2012	Treat2013	Treat2014	Treat2015	Treat2016	Treat2017	Treat2018
CBW05583-007039	Tucannon River	Annual	Control	Upper									
CBW05583-010495	Tucannon River	Annual	Treatment	Upper	LWD, SC					1	1	1	1
CBW05583-018303	Tucannon River	PY2	Treatment	Upper	LWD						1	1	1
CBW05583-038783	Tucannon River	PY1	Control	Upper									
CBW05583-047999	Panjab Creek	PY3	Tributary	Tributary									
CBW05583-051659	Tucannon River	PY2	Control	Upper									
CBW05583-057139	Tucannon River	PY1	Treatment	Upper	LWD, Levee						1	1	1
CBW05583-072139	Tucannon River	PY3	Control	Upper									
CBW05583-079743	Tucannon River	PY3	Control	Upper									
CBW05583-100223	Tucannon River	PY2	Control	Upper									
CBW05583-109611	Pataha Creek	PY3	Tributary	Tributary									
CBW05583-141567	Cummings Creek	PY3	Tributary	Tributary									
CBW05583-141771	Tucannon River	PY2	Control	Upper									
CBW05583-168191	Tucannon River	PY1	Control	Upper									
CBW05583-169855	Tucannon River	PY1	Treatment	Upper	LWD			1	1	1	1	1	1
CBW05583-170443	Tucannon River	Annual	Treatment	Upper	LWD, Levee						1	1	1
CBW05583-178047	Tucannon River	PY1	Control	Upper									
CBW05583-182527	Cummings Creek	PY2	Tributary	Tributary									
CBW05583-196787	Tucannon River	PY2	Control	Upper									
CBW05583-203211	Tucannon River	Annual	Treatment	Upper	Levee (2012), LWD		1	1	1	1	1	1	1
CBW05583-208767	Tucannon River	PY1	Treatment	Upper	LWD					1	1	1	1
CBW05583-212787	Tucannon River	PY1	Control	Upper									
CBW05583-214475	Tucannon River	Annual	Treatment	Upper	LWD, Levee						1	1	1
CBW05583-214911	Tucannon River	PY2	Control	Upper									
CBW05583-222251	Tucannon River	PY1	Control	Lower									
CBW05583-248063	Tucannon River	Annual	Treatment	Upper	LWD, SC					1	1	1	1
CBW05583-256895	Little Tucannon River	PY1	Tributary	Tributary									
CBW05583-274303	Tucannon River	PY3	Control	Upper									
CBW05583-276351	Tucannon River	Annual	Control	Upper									
CBW05583-310143	Panjab Creek	PY1	Tributary	Tributary									
CBW05583-327859	Tucannon River	PY1	Control	Upper									
CBW05583-329599	Cummings Creek	PY2	Tributary	Tributary									
CBW05583-339839	Tucannon River	Annual	Control	Upper									
CBW05583-345983	Tucannon River	PY2	Control	Upper									
CBW05583-353323	Tucannon River	PY3	Control	Lower									
CBW05583-384819	Tucannon River	PY3	Control	Upper									
CBW05583-386091	Tucannon River	Annual	Treatment	Lower	LWD, Levee, SC					1	1	1	1

Combining Status and Trend and Effectiveness Monitoring Designs: Yankee Fork

•Started in 2013

•2 strata: Status and Trend and Restoration Areas

•Phased restoration with planned before/after sampling resulted in unique 'Step Panel' sampling approach

•Combines AEM and Status and Trend Objectives.

•Status and Trend Sites used as Reference for AEM sites (provides control at different scales)

CHaMP Data Analysis

- Objective: What is the mean LWD by subgroup "treatment" (By Year and Average of all Years)
- Question: Which sort of analysis (design or model based) should I use?

CHaMP Data Analysis

- Objective: What is the effect of restoration on LWD?
- Question: Which sort of analysis (design or model based) should I use?

Outline of model for analysis for estimating the effect of restoration on LWD

- Mixed effects model including:
 - Dependent variable:
 - LWD
 - Independen in
 - include:

Incorporate sampling design into analysis!

Trs)

Stre

Sub_rreat, Sub_loc, SubTrType

Working with CHaMP Statisticians

Helping us help you

Working with CHaMP Statisticians

- Be clear on analysis objective:
 - Objective, in conjunction with data and sampling design, drives analysis strategy
- Carefully define spatial region(s) of interest
 - Watersheds
 - Subgroups within watersheds
- Be patient. 😳

CHaMP

 Your statistician may know less about fish biology than you know about design and model based analysis

CHaMP Data Analysis

In Summary:

Sampling design needs to be taken into account during any and all analyses of CHaMP data

Introduction to CHaMP sampling and Analysis

- Acknowledgements
 - Carol Volk
 - Phil Larsen
 - Kevin See
 - Chris Jordan
 - Boyd Bouwes

