

Airborne Lidar & CHaMP Surveys

2015 CHaMP Camp

Cove, Oregon – June 3rd, 2015

Presenter:

• Kenny DeMeurichy (USU)

MODULE PURPOSE

- An overview of the process required to Integrate airborne lidar data with Champ geodatabases
- LAS to Hybrid DEM

Hybrid DEM & other products

What is lidar?

- It's just another tape measure
- But the tape measure is moving
- Light detection and ranging

Hal

• Uses a laser, light amplification by stimulated emission of radiation

Near Infrared wave length

- The most common airborne terrestrial lidar system
- 1064nm
- Blue-Green Wavelength
 - Used by all bathymetric systems
 - Frequency doubled
 - Penetrates water
 - Return dependent on vegetation, Water clarity

Why do we care?

- Champ topo crews have limits; time constraints.
- CHaMP survey: In vs Out of channel
- Main Channel may shift to another area not surveyed by crew; lateral
- Gives context to Champ Surveys
- Lidar data will have good coverage on terraces
- Provides data between each ChaMP reach
- Larger scale-River Styles-RS truthing
- Lidar data contains vegetation information

Is lidar currently available for your watershed?

Do your research:

Open Topo

Hal

- NOAA; Digital Coast
- Oregon, Wash., Idaho, lidar Consortium
- Download the lidar extents polygon
- Intersect with site shape file or Survey Extent?
- The lidar report is a must have.
 And.....

How many Champ sites overlap?

Data Set Name/year	Watershed	Approx#Sites
USBR_UpperColumbiaRiverWest_2006	Wenatchee	23
USBR_UpperColumbiaRiverWest_2006	Entiat	57
USBR_UpperColumbiaRiverWest_2006	Methow	37
JohnDayDesolationCreek 2006	JohnDay	14
Lemhi 2010	Lemhi	34
– SouthForkSalmonAndSecesh 2008	Salmon	5
GRB LiDAR Catherine Wallowa Report 2009	Upper Grand Ronde	11
LiDAR Data Report Grande Ronde CRITEC 2009	Upper Grande Ronde	77
LiDAR Report GRB Willow Catherine 07	Upper Grande Ronde	8
SouthForkIohnDay 2005	John Day	16
LC West Malbuer Nat Forest 2010	JohnDay	0
	Joiniday	9
Umatilia	Upper Grande Konde	10
Ochoco	JohnDay	4
GeologyAndMinerals_07-10	JohnDay-MF-CampCreek	39
		211

BONNEVILLE POWER ADMINISTRATION

CHaMP

WARNING?

Coordinate system Issues are an Issue!

- Champ watersheds may not be in same coordinate system as the lidar data. 10 vs 11 vs 12.
- Multiple Flights over the same area may not be in the same coordinate system. 10 vs 11 vs 12.
- Multiple flights in the same area with same coordinate system may use a different coordinate for the same base point.

The lidar report contains the coordinate system definition and control coordinates.

Download the lidar extent polygon
 Gather All of the watershed site survey extent polygons

The Entiat Example

CHaMP

MINISTRATION

Identify Champ Sites within lidar extents

beneet by Location

Select features from one or more target layers based on their location in relation to the features in the source layer.

Selection method:

select features from

Target layer(s):

L22and21_WashLidar_Control

AllChampSites2015

WenatcheContol_12_14

L22_Ent2012_Control_Points

Baseline

WenatcheSurveyExtent_12_14

Entiat_Survey_Extent

L22_WenUCRW_2006_Sites

L22_WenUCRW_2006_Extent

wa2013_pslc_entiat_m2613_index

Only show selectable layers in this list

Source layer:

V L22_WenUCRW_2	-			
Use selected feature	s (0 feature	es selected)	
Spatial selection method	for target lay	yer <mark>fea</mark> tu	re(s):	
intersect the source lay	er <mark>feature</mark>			
Apply a search distar	nce			
40.000000	Feet		\vee	
About select by location	C	ж	Apply	Close

BPA

BONNEVILLE POWER ADMINISTRATION

CHaMP

Columbia Habitat Monitoring Program

Look for sites with High capacity for lateral adjustment

Columbia Habitat Monitoring Program

Research to find all records of control available in project vicinity

• Lidar report.

National Geodetic Survey (NGS) Data Sheets

Local Networks may exist which will save us Time

Control Survey Methods

- Survey as many benchmarks as possible at each site, even retired BM's
- RTK from the LC to at least two champ site BM's at each champ site.
- RTK from the LC to a location near the champ site and set control. The champ crew would then survey from the set control to at least two champ site BM's at each champ site.
- With the right equipment and software a static network might be more efficient. Watershed/Site dependent.

Columbia Habitat Monitoring Program

Benchmark files can be fairly clean or very messy. Location in the field: we all know about the challenges!

CHAMP Columbia Hab Monitoring Pro

a Habitat 🧠 ng Program ~~~

	Cr	Kenny		
Visit 1	Visit 2	Visit 3	Visit 4	lidar bm survey
bm1	bm1			
bm2	bm2	bm2		
bm3				
	bm201	bm201	bm201	bm201
		bm301	bm301	bm301
		bm302		
			bm401	bm401

Is Visit 1 a problem ?

Control Survey Complete! Geodatabase Transformation

Check bm coordinates for all visits Theoretically all visits should be R & T the same values.

Errors between Lbm and bm must be reviewed. Copan Lite!

R & T bm's use: Foresight, LGO, Copan Lite.

R & T all visit gdb's in Arc, CHaMP tool.

Track all R & T, add info to transformation table.

If all visits have the same bm's R & T all data in Arc, CHaMP tool.

Currently No R & T info in transformation table

Each visit R & T is independent. Currently No direct control of R & T.

GIS: How to make a hybrid DEM

Assuming You Have two dem's

BONNEVILLE POWER ADMINISTRATION

Columbia Habitat Monitoring Program

CHaMP

V

Extent Polygon

Edi	Edit Sketch Properties						
*語 × Z M デ Finish Sketch							
	#	х	Y				
	0	720856.000	4943350.000				
	1	721053.000	4943350.000				
	2	721053.000	4943173.000				
	3	720856.000	4943173.000				

BONNEVILLE POWER ADMINISTRATION

Columbia Habitat Nonitoring Program

CHaMP

Bin.LAS to DEM 1 m vs .1m

CHAMP Columbia Monitoring

olumbia Habitat Ionitoring Program

Trim the lidar DEM

]bu

05 Lidar Trim & Resample to .1m & Hillshade

K:\Shared\et_al\Projects\USA\Oregon\JohnDay\BridgeCreek\raw_Data\00_Watershed\APs\Professional\2012\Rasters\Bare_Earth\be_brcrk_2012	-	2	
Input Extents or feature mask data			
Extent1	-	2	
Output . 1m Raster Dataset		_	
K:\Shared\et_al\Projects\USA\Champ\2015\Training\Lidar\GIS\MeyerCampB_2013_L12.tif		6	
Output Hillshade raster			
K:\Shared\et_al\Projects\USA\Champ\2015\Training\Lidar\GIS\MeyerCampB_2013_L12HS.tif		6	
			Ĭ
OK Cancel Environments	< < Hi	de Heln	

Lidar DEM Trimmed resampled to .1 m

Control location of every cell

Layer Properties

ieneral Source	e Key Metadata	Extent	Display	Symbology	
Property		V	alue		^
E Extent					
Тор		4	943350		
Left		7	20856		
Right		7	21053		
Bottom		4	943173		

CHaMP

Jolumbia Habitat Monitoring Program

ADMINISTRATION

×		Environment Settings	
¥ Workspace			
¥ Output Coordinates			
* Processing Extent			
Extent			
Same as dataset Extent1.shp		¥	6
	Тор		
	4943350.000000		
Left		Right	
720856.000000		721053.000000	
	Bottom		
	4943173.000000		
Snap Raster			
		-	2
XY Resolution and Tolerance			

200

CHaMP

× M Values

Combining The DEM's

What else should I have done? Is the ground based DEM Orthogonal?

2 DEM Complier & Create Hillshade \$ SA 1.0

Input DEM		
K:\Shared\et_al\Projects\USA\Champ\2015\Training\Lidar\GIS\VISIT_2785\Topo\JDW00001-MeyersCampB_2014.gdb\DEM1	•	6
Input Extents		-
Extent1	•	B
Input Reach 05 Lidar		-
MeyerCampB_2013_L12.tif	-	B
Output Hillshade		
$eq:shared_et_al_Projects_USA_Champ_2015_Training_Lidar_GIS_WeyerCampB_2013_HybridHS.tif$		B
Output Slope Analysis		
\\\\\\\\\\\\\		0
	_	0.2

The result: Hybrid DEM

CHaMP

Columbia Habitat Monitoring Program

Budget Segregation Survey Method polygon

AKGP

CHaMP

Add Method field, fill in Methods

Method

Table
🗄 • 🖶 • 🖳 🌄 🖄 🖉 🗶
MeyersCamp13_SurveyType
FID Shape * Id

F	0	Polygon ZM	0	Lidar
		Debugge 711	0	41-000

Resources

• Open Topo

CHaN

- National Geodetic Survey
- NOAA Digital Coast
- Lidar Consortium: OR, ID, WA
- Email: kenny.demeurichy@usu.edu
- Phone: 435-554-8492
- http://geohydrodynamatics.blogspot.com

Thank You!

CHaMP

Columbia Habitat Monitoring Program

