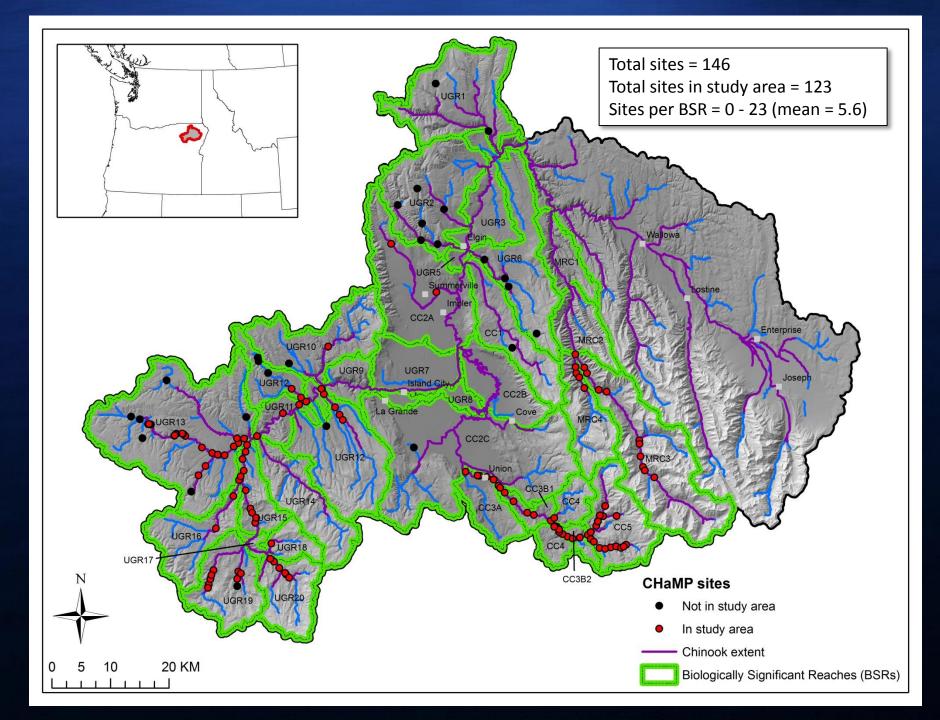
Modeling relationships between CHaMP metrics and landscape characteristics in the Upper Grande Ronde River basin

> Presenter: Casey Justice Co-authors: Seth White, Dale McCullough, Monica Blanchard


> > Columbia River Inter-Tribal Fish Commission

Columbia Habitat Monitoring Program Advanced Training Workshop, June 4, 2015

Objectives:

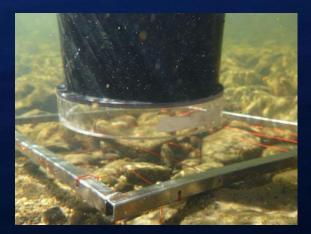
- 1) Develop statistical models relating CHaMP habitat metrics to landscape characteristics that can be used to extrapolate CHaMP data to unsampled areas.
- Roll-up CHaMP metrics to the Biologically Significant Reach (BSR) scale for use in life-cycle modeling.

Possible Methods for Data Extrapolation

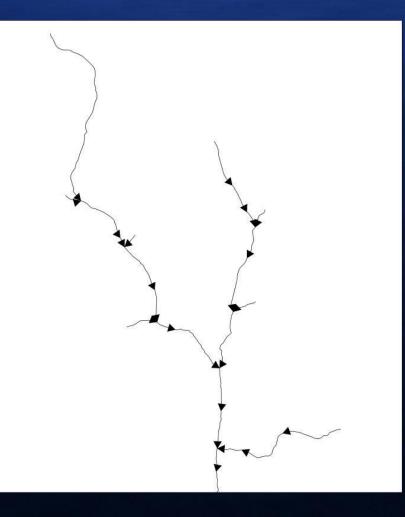
1. Generalized Random Tessellation Stratified (GRTS)

- Average for entire population
- Average for BSRs
- Average by geomorphic classification (River Styles or other)
- Correlation with spatially continuous rapid assessment data
 - Oregon Aquatic Inventories data
 - New rapid assessment protocol designed to crosswalk with CHaMP
- 3. Linear mixed-effects models based on remote sensing data
- **4. Spatial statistical network models** based on remote sensing data and spatial autocorrelation among sites

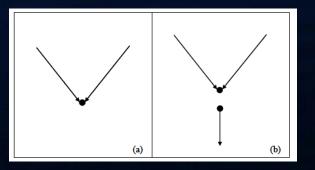
Dependent Variables (CHaMP Metrics)


Percent Pools

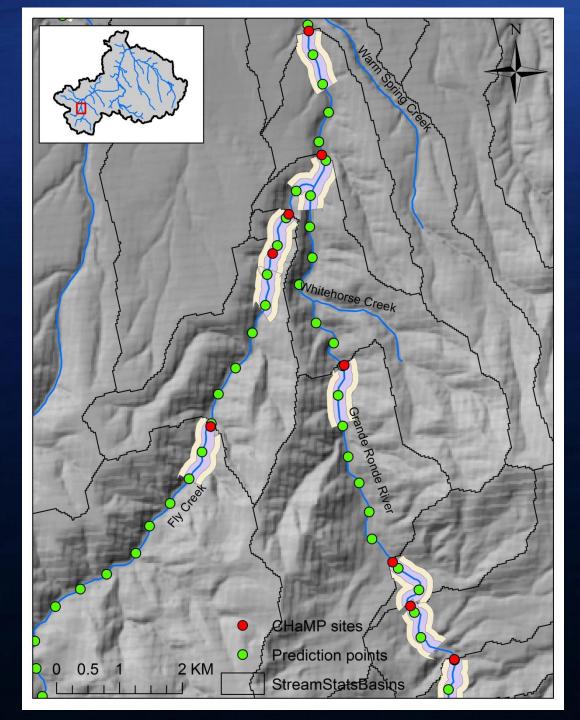
Large Wood Frequency



Pool Tail Fines < 2 mm

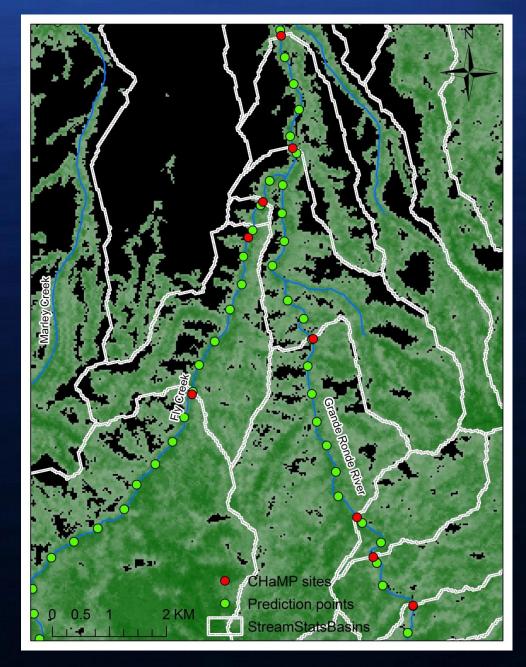


Build a Landscape Network

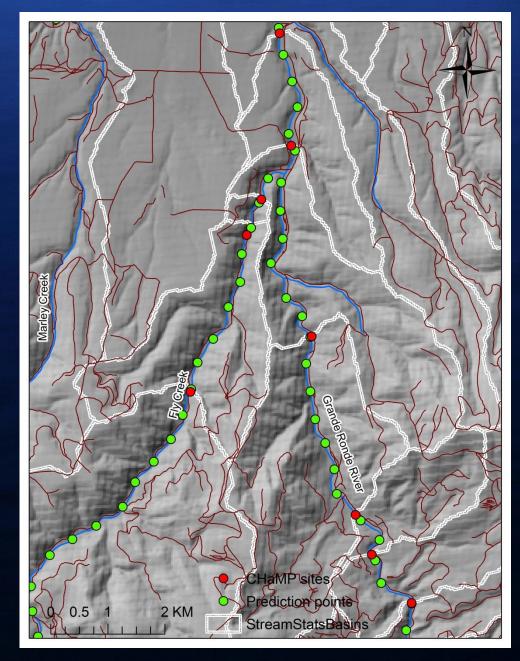

Spatial Tools for the Analysis of River Systems (STARS)

- Import Hydrology Layer (Reconditioned NHDPlus stream layer from USFS Norwest Project, 1:100K resolution)
- Ensure stream segments are digitized in the downstream direction
- Eliminate topological errors such as converging stream nodes or braided channels

Figures from Peterson (2014)


- 4. Create prediction points (spacing 500 m)
- 5. Create watershed polygons for CHaMP sites and predicition points

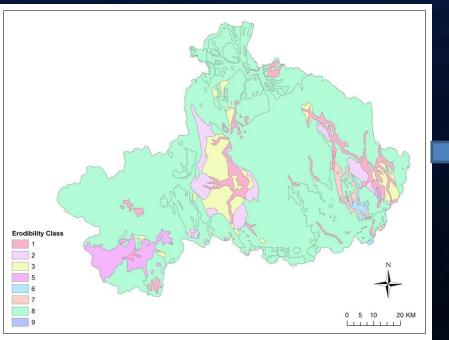
 a) From USGS
 Streamstats
- 6. Create riparian buffer polygons
 - a) Lengths = 1, 2, 5km
 - b) Widths = 30, 100, 200, 500m

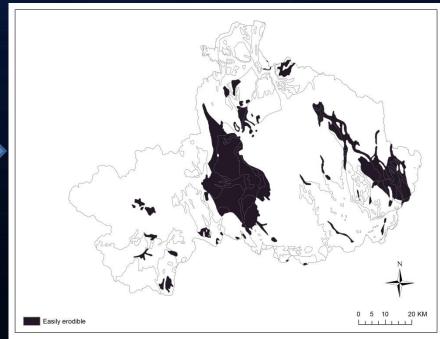

Landscape/Land Use Characteristics

Number	Metric	Category	Description	Source
	1 BFQ	Flow	Bankfull Flow (cms)	Netmap
	2 MEANANNCMS	Flow	Modeled mean annual streamflow (cms)	Netmap
	3 Q0001E_08	Flow	Modeled mean August streamflow (cfs)	NHDPlus
	4 Q0001E_MA	Flow	Modeled mean annual streamflow (cfs)	NHDPlus
	5 UnitStrPow	Flow	Unit stream power (1000 kg/m ³ * 9.8 m/s ² * mean annual flow (cms) * channel slope)/bankfull width (m)	Netmap
	6 siteid	Random	Site identification number	CHaMP
	7 VisitYear	Random	Year the habitat survey was completed	СНаМР
	8 AreaKm2Wat	Reach intrinsic	Watershed area (Km ²) calculated from Streamstats watershed polygons	StreamStats
	9 ELEV_M	Reach intrinsic	Mean Elevation (m)	Netmap
1	0 ErodPct	Reach intrinsic	Percentage area with highly erodable geology within the upstream watershed.	СНаМР
1	1 GRADIENT	Reach intrinsic	Gradient (rise/run) of nearest stream segment	Netmap
1	2 SLOPEpct	Reach intrinsic	Slope (rise/run) of nearest stream segment * 100	NHDPlus
1	3 StDen_wat	Reach intrinsic	Stream density (drainage density) in km/km ² for the upstream watershed	NHDPlus
1	4 VWI_Floor	Reach intrinsic	Valley width index (bankfull width/valley width)	Netmap
1	5 WIDTH_M	Reach intrinsic	Modeled bankfull width (m)	Netmap
1	6 rd1km100m	Roads	Road density (Km/Km ²) in a buffer area of length 1km upstream from the bottom of site and width 100m on either side of the stream.	CRITFC
1	7 rd1km200m	Roads	Road density (Km/Km ²) in a buffer area of length 1km and width 200m	CRITFC
1	8 rd2km100m	Roads	Road density (Km/Km ²) in a buffer area of length 2km and width 100m	CRITFC
1	9 rd2km200m	Roads	Road density (Km/Km ²) in a buffer area of length 2km and width 200m	CRITFC
2	0 rdwat	Roads	Road density (Km/Km ²) within the upstream watershed	CRITFC
2	1 tco1km100m	Tree Cover	Percent canopy cover from trees > 5 m tall in a buffer area of length 1km and width 100	NLCD 2011
2	2 tco1km200m	Tree Cover	Percent canopy cover from trees > 5 m tall in a buffer area of length 1km and width 200	NLCD 2011
2	3 tco1km30m	Tree Cover	Percent canopy cover from trees > 5 m tall in a buffer area of length 1km and width 30	NLCD 2011
2	4 tco2km100m	Tree Cover	Percent canopy cover from trees > 5 m tall in a buffer area of length 2km and width 100	NLCD 2011
2	5 tco2km200m	Tree Cover	Percent canopy cover from trees > 5 m tall in a buffer area of length 2km and width 200	NLCD 2011
2	6 tco2km30m	Tree Cover	Percent canopy cover from trees > 5 m tall in a buffer area of length 2km and width 30	NLCD 2011
2	7 tcowat	Tree Cover	Percent canopy cover from trees > 5 m tall within the upstream watershed.	NLCD 2011
2	8 LWFreq_Bf	Wood	Count of wood pieces >= 1m length and .10m diameter in the bankfull channel per 100m channel length	CHaMP
2	9 LWVol_Bf	Wood	Total volume of wood pieces >= 1m length and .10m diameter in the bankfull channel (m ³)	СНаМР
3	0 LWVol_Wet	Wood	Total volume of wood pieces >= 1m length and .10m diameter in the wetted channel (m ³)	CHaMP

Tree Cover (NLCD 2011)

Road Density (TIGER, USFS, CRITFC)


Erosivity (Percent Easily Erodible Geology)


Data from Carol Volk, North Fork Research

Erodibility Class

- 1: low resistance, fine grain (alluvial, glacial silt)
- 2: low resistance, medium grain (sand)
- 3: low resistance, coarse grain (gravel, boulders, colluvial)
- 4: medium resistance, dissolvable (limestones and dolomites)
- 5: medium resistance, fine grain (shales, mudstones, clays)
- 6: medium resistance, medium grain (most sedimentary, a 'catch all' if formation descriptions were vague).
- 7: medium resistance, coarse grain (conglomerates, pyroclastics)8: high resistance (consolidated volcanics, metamorphics)9: open water

Erodibility Re-classified Easily erodible area

Dependent Variables

Percent Pools

Large Wood Frequency

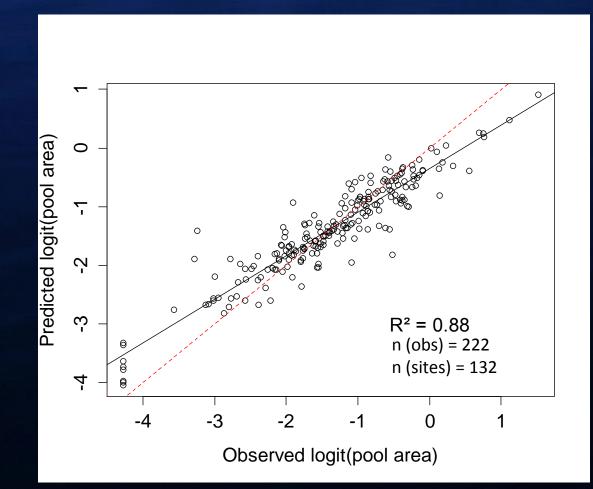
Pool Tail Fines < 2 mm

Independent Variables (Fixed Effects)

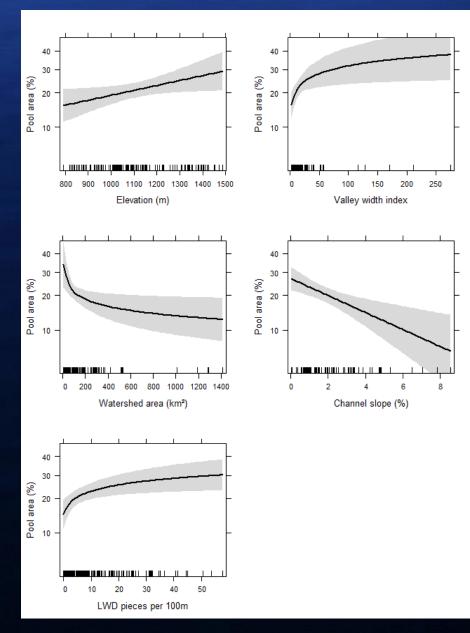
- 1. Elevation
- 2. Valley width index
- 3. Watershed area
- 4. Slope
- 5. Tree cover (1km X 200m buffer)
- 6. Drainage density
- Large wood frequency (wet)

- 1. Elevation
- 2. Valley width index
- 3. Bankfull width
- 4. Slope
- 5. Tree cover (watershed)
- 6. Drainage density

- 1. Elevation
- 2. Valley width index
- 3. Watershed area
- 4. Slope
- 5. Erosivity
- 6. Tree cover (watershed)
- 7. Road density (watershed)
- 8. Drainage density

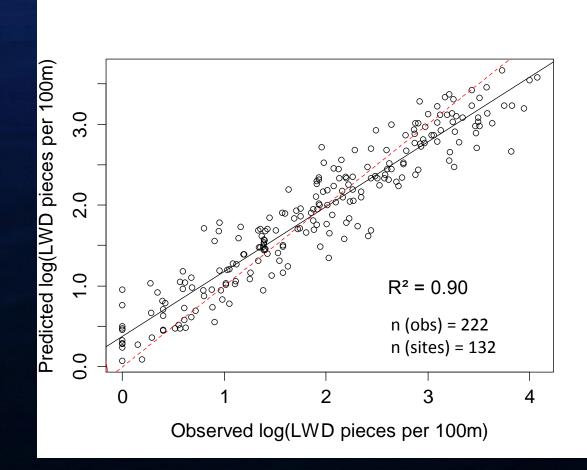

Random Effects (for all models) = Site and Year

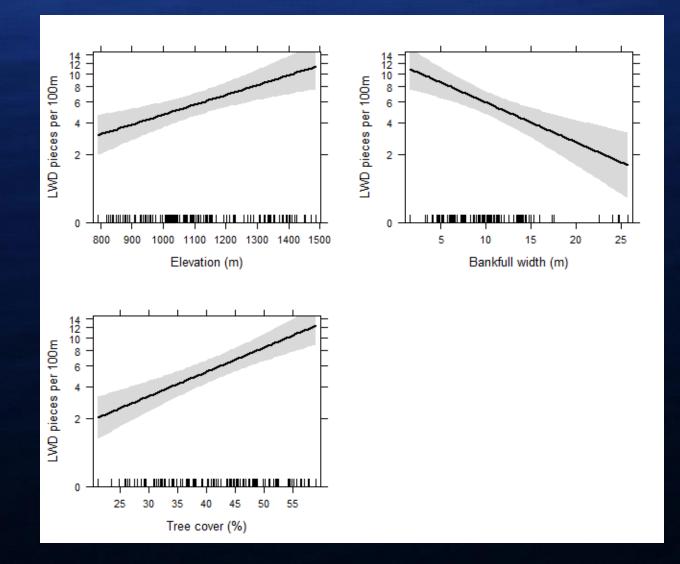
Data Sources: Netmap, NLCD, NHDPlus, USGS StreamStats, CHaMP, TIGER, USFS


Results Percent Pools

Best Fitting Model:

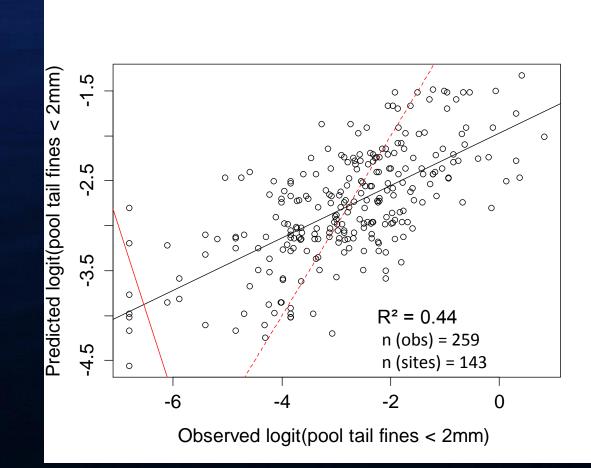
logit(Percent Pools) = Elevation + log(Valley Width Index) + log(Watershed Area) + Slope + log(Large Wood Frequency); Random effects = site + year

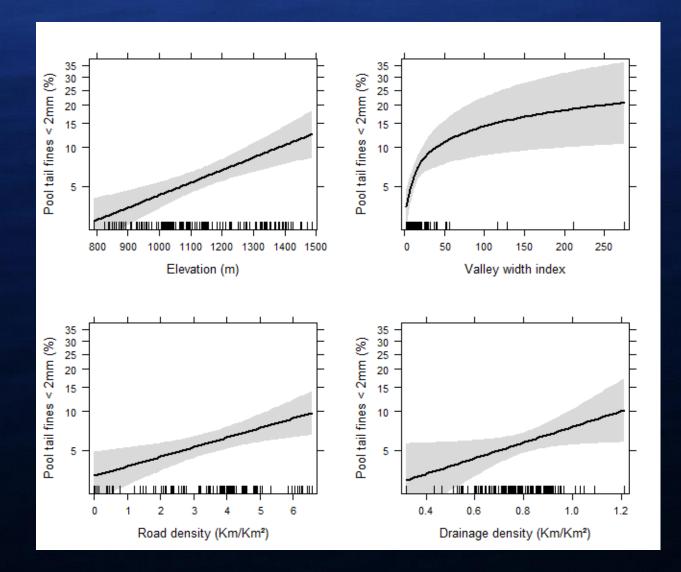

Results Percent Pools


Results Large Wood Frequency (wet)

Best Fitting Model:

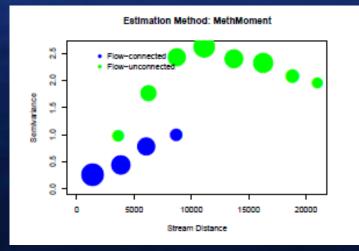
log(Large Wood Frequency) = Elevation + Bankfull Width + Tree Cover (watershed); Random effects = site + year


Results Large Wood Frequency (wet)

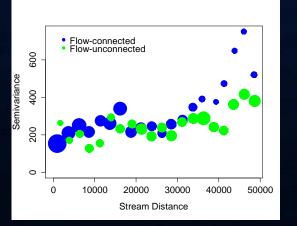

Results Pool Tail Fines < 2 mm

Best Fitting Model:

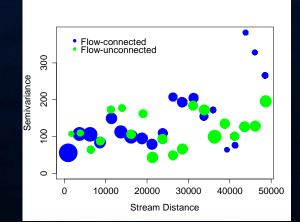
logit(Pool Tail Fines < 2 mm) = Elevation + log(Valley Width Index) + Road Density (watershed) + Drainage Density; Random effects = Site + Year



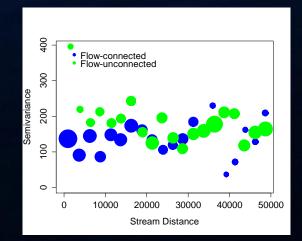
Results Pool Tail Fines < 2 mm


Exploring Spatial Autocorrelation Among Sites Torgegram Plots

Mean summer temperature (Ver Hoef et al. (2014)



Plots generated using SSN package in R


Percent pools

Large wood frequency

Pool Tail Fines < 2 mm

Conclusions

- 1. Linear mixed-effects models can be used to predict the quantity of large woody debris and pool area as a function of landscape/land-use variables derived from remote sensing data with a fairly high degree of accuracy.
- The best-fitting model for pool tail fines was relatively weak (R² = 0.44), and alternative methods will be needed to accurately predict pool tail fines in unsampled locations.
- 3. The use of spatial statistical network models did not generally improve model fit over the linear mixed-effects models, with the exception of large wood frequency, which was slightly improved by the inclusion of spatial autocorrelation.

Next Steps

1. Add design weights to analysis!

- 2. Use these models to generate predictions of CHaMP metrics for prediction sites (spaced every 500 m) and calculate mean values for each Biologically Significant Reach
- 3. Expand modeling effort to include other key CHaMP metrics (e.g., Water Temperature, Weighted Usable Area from HSI models, NREI estimates of Capacity) as well as fish density.
- Compare different methods of rolling-up CHaMP data (i.e., GRTS, rapid assessment, linear mixed-effects models, spatial statistical network models)
- 5. Apply best estimates of mean habitat conditions at each BSR to life cycle model and restoration planning

Questions?

